Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage

Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-10, Vol.17 (40), p.e2102893-n/a
Hauptverfasser: Jiang, Ying, Xie, Man, Wu, Feng, Ye, Zhengqing, Zhang, Yixin, Wang, Ziheng, Zhou, Yaozong, Li, Li, Chen, Renjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page e2102893
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Jiang, Ying
Xie, Man
Wu, Feng
Ye, Zhengqing
Zhang, Yixin
Wang, Ziheng
Zhou, Yaozong
Li, Li
Chen, Renjie
description Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices. Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.
doi_str_mv 10.1002/smll.202102893
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564489279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579307961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFavnhe8eGk7u5smzVFKbYWIheg5bLOTJmWTrbsJpTd_gr_RX-KWSgUvnt4M873H8Ai5ZTBkAHzkaq2HHDgDPonFGemxkIlBOOHx-WlmcEmunNsACMaDqEfKqVlJ3dIUNTaVQrowWpsdXRq9L1FZ09BZk8ut67RsUdGqoXMrtyU2SAtj6aJal18fn0u0fqtlkyNNqrasunqUGuWFpq2xco3X5KKQ2uHNj_bJ2-PsdboYJC_zp-lDMsjFGMRArILJmAmJhYJIFTlCzsc8V4FQLMQQhZQqAKWkEhCBDCNUEGIBUeyRIBSiT-6PuVtr3jt0bVZXLketZYOmcxkfh0EwiXkUe_TuD7oxnW38d57ydx_qW-uT4ZHKrXHOYpFtbVVLu88YZIfis0Px2al4b4iPhl2lcf8PnaXPSfLr_QbCYIl-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579307961</pqid></control><display><type>article</type><title>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</title><source>Wiley Journals</source><creator>Jiang, Ying ; Xie, Man ; Wu, Feng ; Ye, Zhengqing ; Zhang, Yixin ; Wang, Ziheng ; Zhou, Yaozong ; Li, Li ; Chen, Renjie</creator><creatorcontrib>Jiang, Ying ; Xie, Man ; Wu, Feng ; Ye, Zhengqing ; Zhang, Yixin ; Wang, Ziheng ; Zhou, Yaozong ; Li, Li ; Chen, Renjie</creatorcontrib><description>Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices. Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202102893</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Chemical bonds ; CoSe ; Cycles ; Electrochemical analysis ; Electronic properties ; Graphene ; Heterostructures ; High temperature ; Ion storage ; Lithium ; lithium‐ion batteries ; Metal-organic frameworks ; Nanoparticles ; Nanotechnology ; Particulate composites ; Polyhedra ; Reaction kinetics ; Selenides ; Sodium ; sodium‐ion batteries ; Transition metals</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (40), p.e2102893-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</citedby><cites>FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</cites><orcidid>0000-0002-7001-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202102893$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202102893$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Xie, Man</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Ye, Zhengqing</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Wang, Ziheng</creatorcontrib><creatorcontrib>Zhou, Yaozong</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><title>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices. Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.</description><subject>Anodes</subject><subject>Chemical bonds</subject><subject>CoSe</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>High temperature</subject><subject>Ion storage</subject><subject>Lithium</subject><subject>lithium‐ion batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Particulate composites</subject><subject>Polyhedra</subject><subject>Reaction kinetics</subject><subject>Selenides</subject><subject>Sodium</subject><subject>sodium‐ion batteries</subject><subject>Transition metals</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFavnhe8eGk7u5smzVFKbYWIheg5bLOTJmWTrbsJpTd_gr_RX-KWSgUvnt4M873H8Ai5ZTBkAHzkaq2HHDgDPonFGemxkIlBOOHx-WlmcEmunNsACMaDqEfKqVlJ3dIUNTaVQrowWpsdXRq9L1FZ09BZk8ut67RsUdGqoXMrtyU2SAtj6aJal18fn0u0fqtlkyNNqrasunqUGuWFpq2xco3X5KKQ2uHNj_bJ2-PsdboYJC_zp-lDMsjFGMRArILJmAmJhYJIFTlCzsc8V4FQLMQQhZQqAKWkEhCBDCNUEGIBUeyRIBSiT-6PuVtr3jt0bVZXLketZYOmcxkfh0EwiXkUe_TuD7oxnW38d57ydx_qW-uT4ZHKrXHOYpFtbVVLu88YZIfis0Px2al4b4iPhl2lcf8PnaXPSfLr_QbCYIl-</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jiang, Ying</creator><creator>Xie, Man</creator><creator>Wu, Feng</creator><creator>Ye, Zhengqing</creator><creator>Zhang, Yixin</creator><creator>Wang, Ziheng</creator><creator>Zhou, Yaozong</creator><creator>Li, Li</creator><creator>Chen, Renjie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></search><sort><creationdate>20211001</creationdate><title>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</title><author>Jiang, Ying ; Xie, Man ; Wu, Feng ; Ye, Zhengqing ; Zhang, Yixin ; Wang, Ziheng ; Zhou, Yaozong ; Li, Li ; Chen, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Chemical bonds</topic><topic>CoSe</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>High temperature</topic><topic>Ion storage</topic><topic>Lithium</topic><topic>lithium‐ion batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Particulate composites</topic><topic>Polyhedra</topic><topic>Reaction kinetics</topic><topic>Selenides</topic><topic>Sodium</topic><topic>sodium‐ion batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Xie, Man</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Ye, Zhengqing</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Wang, Ziheng</creatorcontrib><creatorcontrib>Zhou, Yaozong</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ying</au><au>Xie, Man</au><au>Wu, Feng</au><au>Ye, Zhengqing</au><au>Zhang, Yixin</au><au>Wang, Ziheng</au><au>Zhou, Yaozong</au><au>Li, Li</au><au>Chen, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>40</issue><spage>e2102893</spage><epage>n/a</epage><pages>e2102893-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices. Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202102893</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (40), p.e2102893-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2564489279
source Wiley Journals
subjects Anodes
Chemical bonds
CoSe
Cycles
Electrochemical analysis
Electronic properties
Graphene
Heterostructures
High temperature
Ion storage
Lithium
lithium‐ion batteries
Metal-organic frameworks
Nanoparticles
Nanotechnology
Particulate composites
Polyhedra
Reaction kinetics
Selenides
Sodium
sodium‐ion batteries
Transition metals
title Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20Selenide%20Hollow%20Polyhedron%20Encapsulated%20in%20Graphene%20for%20High%E2%80%90Performance%20Lithium/Sodium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jiang,%20Ying&rft.date=2021-10-01&rft.volume=17&rft.issue=40&rft.spage=e2102893&rft.epage=n/a&rft.pages=e2102893-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202102893&rft_dat=%3Cproquest_cross%3E2579307961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579307961&rft_id=info:pmid/&rfr_iscdi=true