Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage
Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still respons...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-10, Vol.17 (40), p.e2102893-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | e2102893 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Jiang, Ying Xie, Man Wu, Feng Ye, Zhengqing Zhang, Yixin Wang, Ziheng Zhou, Yaozong Li, Li Chen, Renjie |
description | Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices.
Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage. |
doi_str_mv | 10.1002/smll.202102893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564489279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579307961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFavnhe8eGk7u5smzVFKbYWIheg5bLOTJmWTrbsJpTd_gr_RX-KWSgUvnt4M873H8Ai5ZTBkAHzkaq2HHDgDPonFGemxkIlBOOHx-WlmcEmunNsACMaDqEfKqVlJ3dIUNTaVQrowWpsdXRq9L1FZ09BZk8ut67RsUdGqoXMrtyU2SAtj6aJal18fn0u0fqtlkyNNqrasunqUGuWFpq2xco3X5KKQ2uHNj_bJ2-PsdboYJC_zp-lDMsjFGMRArILJmAmJhYJIFTlCzsc8V4FQLMQQhZQqAKWkEhCBDCNUEGIBUeyRIBSiT-6PuVtr3jt0bVZXLketZYOmcxkfh0EwiXkUe_TuD7oxnW38d57ydx_qW-uT4ZHKrXHOYpFtbVVLu88YZIfis0Px2al4b4iPhl2lcf8PnaXPSfLr_QbCYIl-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579307961</pqid></control><display><type>article</type><title>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</title><source>Wiley Journals</source><creator>Jiang, Ying ; Xie, Man ; Wu, Feng ; Ye, Zhengqing ; Zhang, Yixin ; Wang, Ziheng ; Zhou, Yaozong ; Li, Li ; Chen, Renjie</creator><creatorcontrib>Jiang, Ying ; Xie, Man ; Wu, Feng ; Ye, Zhengqing ; Zhang, Yixin ; Wang, Ziheng ; Zhou, Yaozong ; Li, Li ; Chen, Renjie</creatorcontrib><description>Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices.
Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202102893</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Chemical bonds ; CoSe ; Cycles ; Electrochemical analysis ; Electronic properties ; Graphene ; Heterostructures ; High temperature ; Ion storage ; Lithium ; lithium‐ion batteries ; Metal-organic frameworks ; Nanoparticles ; Nanotechnology ; Particulate composites ; Polyhedra ; Reaction kinetics ; Selenides ; Sodium ; sodium‐ion batteries ; Transition metals</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (40), p.e2102893-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</citedby><cites>FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</cites><orcidid>0000-0002-7001-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202102893$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202102893$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Xie, Man</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Ye, Zhengqing</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Wang, Ziheng</creatorcontrib><creatorcontrib>Zhou, Yaozong</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><title>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices.
Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.</description><subject>Anodes</subject><subject>Chemical bonds</subject><subject>CoSe</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electronic properties</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>High temperature</subject><subject>Ion storage</subject><subject>Lithium</subject><subject>lithium‐ion batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Particulate composites</subject><subject>Polyhedra</subject><subject>Reaction kinetics</subject><subject>Selenides</subject><subject>Sodium</subject><subject>sodium‐ion batteries</subject><subject>Transition metals</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFavnhe8eGk7u5smzVFKbYWIheg5bLOTJmWTrbsJpTd_gr_RX-KWSgUvnt4M873H8Ai5ZTBkAHzkaq2HHDgDPonFGemxkIlBOOHx-WlmcEmunNsACMaDqEfKqVlJ3dIUNTaVQrowWpsdXRq9L1FZ09BZk8ut67RsUdGqoXMrtyU2SAtj6aJal18fn0u0fqtlkyNNqrasunqUGuWFpq2xco3X5KKQ2uHNj_bJ2-PsdboYJC_zp-lDMsjFGMRArILJmAmJhYJIFTlCzsc8V4FQLMQQhZQqAKWkEhCBDCNUEGIBUeyRIBSiT-6PuVtr3jt0bVZXLketZYOmcxkfh0EwiXkUe_TuD7oxnW38d57ydx_qW-uT4ZHKrXHOYpFtbVVLu88YZIfis0Px2al4b4iPhl2lcf8PnaXPSfLr_QbCYIl-</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jiang, Ying</creator><creator>Xie, Man</creator><creator>Wu, Feng</creator><creator>Ye, Zhengqing</creator><creator>Zhang, Yixin</creator><creator>Wang, Ziheng</creator><creator>Zhou, Yaozong</creator><creator>Li, Li</creator><creator>Chen, Renjie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></search><sort><creationdate>20211001</creationdate><title>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</title><author>Jiang, Ying ; Xie, Man ; Wu, Feng ; Ye, Zhengqing ; Zhang, Yixin ; Wang, Ziheng ; Zhou, Yaozong ; Li, Li ; Chen, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3503-3b48513aefd07dfce0c252cd43d16e6e3aad40ddad3070a67ed06ef079d434633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Chemical bonds</topic><topic>CoSe</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electronic properties</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>High temperature</topic><topic>Ion storage</topic><topic>Lithium</topic><topic>lithium‐ion batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Particulate composites</topic><topic>Polyhedra</topic><topic>Reaction kinetics</topic><topic>Selenides</topic><topic>Sodium</topic><topic>sodium‐ion batteries</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Xie, Man</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Ye, Zhengqing</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Wang, Ziheng</creatorcontrib><creatorcontrib>Zhou, Yaozong</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ying</au><au>Xie, Man</au><au>Wu, Feng</au><au>Ye, Zhengqing</au><au>Zhang, Yixin</au><au>Wang, Ziheng</au><au>Zhou, Yaozong</au><au>Li, Li</au><au>Chen, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>40</issue><spage>e2102893</spage><epage>n/a</epage><pages>e2102893-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Owing to the high specific capacities, high electrochemical activity, and various electronic properties, transition metal selenides are considered as promising anodes for lithium‐ and sodium‐ion storage. However, poor electronic conductivity and huge volume expansion during cycling are still responsible for their restricted electrochemical performance. Herein, CoSe hollow polyhedron anchoring onto graphene (CoSe/G) is synthesized by self‐assembly and subsequent selenization. In CoSe/G composites, the CoSe nanoparticles, obtained by in situ selenization of metal–organic frameworks (MOFs) in high temperature, are distributed among graphene sheets, realizing N element doping, developing robust heterostructures with a chemical bond. The unique architecture ensures the cohesion of the structure and endorses the reaction kinetics for metal ions, identified by in situ and ex situ testing techniques, and kinetics analysis. Thus, the CoSe/G anodes achieve excellent cycling performance (1259 mAh g−1 at 0.1 A g−1 after 300 cycles for lithium storage; 214 mAh g−1 at 2 A g−1 after 600 cycles for sodium storage) and rate capability (732 mAh g−1 at 5 A g−1 for lithium storage; 290 mAh g−1 at 5 A g−1 for sodium storage). The improved electrochemical performance for alkali‐ion storage provides new insights for the construction of MOFs derivatives toward high‐performance storage devices.
Metal–organic frameworks‐derived CoSe hollow polyhedron encapsulated in graphene (CoSe/G) is synthesized by self‐assembly and in situ selenization strategies. The unique structural design contributes to the structural integrity and fast reaction kinetics during cycling. When used as anodes, the CoSe/G composites achieve excellent cycle stability and rate performance for lithium‐ and sodium‐ion storage.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202102893</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (40), p.e2102893-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2564489279 |
source | Wiley Journals |
subjects | Anodes Chemical bonds CoSe Cycles Electrochemical analysis Electronic properties Graphene Heterostructures High temperature Ion storage Lithium lithium‐ion batteries Metal-organic frameworks Nanoparticles Nanotechnology Particulate composites Polyhedra Reaction kinetics Selenides Sodium sodium‐ion batteries Transition metals |
title | Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High‐Performance Lithium/Sodium Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20Selenide%20Hollow%20Polyhedron%20Encapsulated%20in%20Graphene%20for%20High%E2%80%90Performance%20Lithium/Sodium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jiang,%20Ying&rft.date=2021-10-01&rft.volume=17&rft.issue=40&rft.spage=e2102893&rft.epage=n/a&rft.pages=e2102893-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202102893&rft_dat=%3Cproquest_cross%3E2579307961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579307961&rft_id=info:pmid/&rfr_iscdi=true |