Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention
Objective Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been asses...
Gespeichert in:
Veröffentlicht in: | Obesity (Silver Spring, Md.) Md.), 2021-10, Vol.29 (10), p.1596-1605 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1605 |
---|---|
container_issue | 10 |
container_start_page | 1596 |
container_title | Obesity (Silver Spring, Md.) |
container_volume | 29 |
creator | Dahle, Jared H. Ostendorf, Danielle M. Pan, Zhaoxing MacLean, Paul S. Bessesen, Daniel H. Heymsfield, Steven B. Melanson, Edward L. Catenacci, Victoria A. |
description | Objective
Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention.
Methods
Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial.
Results
All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p < 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p < 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01).
Conclusions
Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation. |
doi_str_mv | 10.1002/oby.23234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564488998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576696774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</originalsourceid><addsrcrecordid>eNp10T9P3DAYBnALUcGVduALIEssZTjwP-JkhBMUJCQWqrZTZDtv7owSO2cnXLOxdutn5JPg4ygDEpNt6efHfvQitE_JMSWEnXg9HjPOuNhCE1pwMpW8-LX9ts_pLvoc4z0hIiOndAftciE4zZiYoL8_wc4XPVauwtpXIza-7Xy0vfUOm4Vyc4hY1TWYHgeIvXVzDA7CfMTwpwNX2X4IgLsAlTW9fQAMy0Gtb0dcDWHNFabs6fFf612_wKuX59Kx8TFi63oID-DW_gv6VKsmwtfXdQ_9uLy4m11Nb26_X8_ObqaG57mYpk6GKCOoJERLUetaSpIXBTCeiZplCmqtC6CpoE6e6CKXDLgBw4ASI_ke-rbJ7YJfDqlS2dpooGmUAz_Ekp1mQuQpMU_08B2990Nw6XdJySwrMilFUkcbZULqFKAuu2BbFcaSknI9nzLNp3yZT7IHr4mDbqF6k_8HksDJBqxsA-PHSeXt-e9N5DO7Z54V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576696774</pqid></control><display><type>article</type><title>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Dahle, Jared H. ; Ostendorf, Danielle M. ; Pan, Zhaoxing ; MacLean, Paul S. ; Bessesen, Daniel H. ; Heymsfield, Steven B. ; Melanson, Edward L. ; Catenacci, Victoria A.</creator><creatorcontrib>Dahle, Jared H. ; Ostendorf, Danielle M. ; Pan, Zhaoxing ; MacLean, Paul S. ; Bessesen, Daniel H. ; Heymsfield, Steven B. ; Melanson, Edward L. ; Catenacci, Victoria A.</creatorcontrib><description>Objective
Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention.
Methods
Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial.
Results
All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p < 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p < 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01).
Conclusions
Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.</description><identifier>ISSN: 1930-7381</identifier><identifier>ISSN: 1930-739X</identifier><identifier>EISSN: 1930-739X</identifier><identifier>DOI: 10.1002/oby.23234</identifier><identifier>PMID: 34431624</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Basal Metabolism ; Bias ; Body Composition ; Body Mass Index ; Calorimetry, Indirect ; Diabetes ; Energy ; Energy Metabolism ; Exercise ; Female ; Humans ; Intervention ; Male ; Mathematical models ; Metabolism ; Obesity ; Overweight ; Physical fitness ; Predictive Value of Tests ; Reproducibility of Results ; Validity ; Weight control</subject><ispartof>Obesity (Silver Spring, Md.), 2021-10, Vol.29 (10), p.1596-1605</ispartof><rights>2021 The Obesity Society (TOS). This article has been contributed to by US Government employees and their work is in the public domain in the USA.</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</citedby><cites>FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</cites><orcidid>0000-0002-8686-0153 ; 0000-0001-9723-3748 ; 0000-0003-1127-9425 ; 0000-0001-9151-9745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foby.23234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foby.23234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34431624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahle, Jared H.</creatorcontrib><creatorcontrib>Ostendorf, Danielle M.</creatorcontrib><creatorcontrib>Pan, Zhaoxing</creatorcontrib><creatorcontrib>MacLean, Paul S.</creatorcontrib><creatorcontrib>Bessesen, Daniel H.</creatorcontrib><creatorcontrib>Heymsfield, Steven B.</creatorcontrib><creatorcontrib>Melanson, Edward L.</creatorcontrib><creatorcontrib>Catenacci, Victoria A.</creatorcontrib><title>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</title><title>Obesity (Silver Spring, Md.)</title><addtitle>Obesity (Silver Spring)</addtitle><description>Objective
Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention.
Methods
Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial.
Results
All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p < 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p < 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01).
Conclusions
Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.</description><subject>Accuracy</subject><subject>Basal Metabolism</subject><subject>Bias</subject><subject>Body Composition</subject><subject>Body Mass Index</subject><subject>Calorimetry, Indirect</subject><subject>Diabetes</subject><subject>Energy</subject><subject>Energy Metabolism</subject><subject>Exercise</subject><subject>Female</subject><subject>Humans</subject><subject>Intervention</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Obesity</subject><subject>Overweight</subject><subject>Physical fitness</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Validity</subject><subject>Weight control</subject><issn>1930-7381</issn><issn>1930-739X</issn><issn>1930-739X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10T9P3DAYBnALUcGVduALIEssZTjwP-JkhBMUJCQWqrZTZDtv7owSO2cnXLOxdutn5JPg4ygDEpNt6efHfvQitE_JMSWEnXg9HjPOuNhCE1pwMpW8-LX9ts_pLvoc4z0hIiOndAftciE4zZiYoL8_wc4XPVauwtpXIza-7Xy0vfUOm4Vyc4hY1TWYHgeIvXVzDA7CfMTwpwNX2X4IgLsAlTW9fQAMy0Gtb0dcDWHNFabs6fFf612_wKuX59Kx8TFi63oID-DW_gv6VKsmwtfXdQ_9uLy4m11Nb26_X8_ObqaG57mYpk6GKCOoJERLUetaSpIXBTCeiZplCmqtC6CpoE6e6CKXDLgBw4ASI_ke-rbJ7YJfDqlS2dpooGmUAz_Ekp1mQuQpMU_08B2990Nw6XdJySwrMilFUkcbZULqFKAuu2BbFcaSknI9nzLNp3yZT7IHr4mDbqF6k_8HksDJBqxsA-PHSeXt-e9N5DO7Z54V</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Dahle, Jared H.</creator><creator>Ostendorf, Danielle M.</creator><creator>Pan, Zhaoxing</creator><creator>MacLean, Paul S.</creator><creator>Bessesen, Daniel H.</creator><creator>Heymsfield, Steven B.</creator><creator>Melanson, Edward L.</creator><creator>Catenacci, Victoria A.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8686-0153</orcidid><orcidid>https://orcid.org/0000-0001-9723-3748</orcidid><orcidid>https://orcid.org/0000-0003-1127-9425</orcidid><orcidid>https://orcid.org/0000-0001-9151-9745</orcidid></search><sort><creationdate>202110</creationdate><title>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</title><author>Dahle, Jared H. ; Ostendorf, Danielle M. ; Pan, Zhaoxing ; MacLean, Paul S. ; Bessesen, Daniel H. ; Heymsfield, Steven B. ; Melanson, Edward L. ; Catenacci, Victoria A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Basal Metabolism</topic><topic>Bias</topic><topic>Body Composition</topic><topic>Body Mass Index</topic><topic>Calorimetry, Indirect</topic><topic>Diabetes</topic><topic>Energy</topic><topic>Energy Metabolism</topic><topic>Exercise</topic><topic>Female</topic><topic>Humans</topic><topic>Intervention</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Obesity</topic><topic>Overweight</topic><topic>Physical fitness</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Validity</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahle, Jared H.</creatorcontrib><creatorcontrib>Ostendorf, Danielle M.</creatorcontrib><creatorcontrib>Pan, Zhaoxing</creatorcontrib><creatorcontrib>MacLean, Paul S.</creatorcontrib><creatorcontrib>Bessesen, Daniel H.</creatorcontrib><creatorcontrib>Heymsfield, Steven B.</creatorcontrib><creatorcontrib>Melanson, Edward L.</creatorcontrib><creatorcontrib>Catenacci, Victoria A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Obesity (Silver Spring, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahle, Jared H.</au><au>Ostendorf, Danielle M.</au><au>Pan, Zhaoxing</au><au>MacLean, Paul S.</au><au>Bessesen, Daniel H.</au><au>Heymsfield, Steven B.</au><au>Melanson, Edward L.</au><au>Catenacci, Victoria A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</atitle><jtitle>Obesity (Silver Spring, Md.)</jtitle><addtitle>Obesity (Silver Spring)</addtitle><date>2021-10</date><risdate>2021</risdate><volume>29</volume><issue>10</issue><spage>1596</spage><epage>1605</epage><pages>1596-1605</pages><issn>1930-7381</issn><issn>1930-739X</issn><eissn>1930-739X</eissn><abstract>Objective
Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention.
Methods
Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial.
Results
All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p < 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p < 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01).
Conclusions
Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34431624</pmid><doi>10.1002/oby.23234</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8686-0153</orcidid><orcidid>https://orcid.org/0000-0001-9723-3748</orcidid><orcidid>https://orcid.org/0000-0003-1127-9425</orcidid><orcidid>https://orcid.org/0000-0001-9151-9745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1930-7381 |
ispartof | Obesity (Silver Spring, Md.), 2021-10, Vol.29 (10), p.1596-1605 |
issn | 1930-7381 1930-739X 1930-739X |
language | eng |
recordid | cdi_proquest_miscellaneous_2564488998 |
source | MEDLINE; Wiley Free Content; Wiley Online Library All Journals |
subjects | Accuracy Basal Metabolism Bias Body Composition Body Mass Index Calorimetry, Indirect Diabetes Energy Energy Metabolism Exercise Female Humans Intervention Male Mathematical models Metabolism Obesity Overweight Physical fitness Predictive Value of Tests Reproducibility of Results Validity Weight control |
title | Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight%20and%20body%20composition%20changes%20affect%20resting%20energy%20expenditure%20predictive%20equations%20during%20a%2012%E2%80%90month%20weight%E2%80%90loss%20intervention&rft.jtitle=Obesity%20(Silver%20Spring,%20Md.)&rft.au=Dahle,%20Jared%20H.&rft.date=2021-10&rft.volume=29&rft.issue=10&rft.spage=1596&rft.epage=1605&rft.pages=1596-1605&rft.issn=1930-7381&rft.eissn=1930-739X&rft_id=info:doi/10.1002/oby.23234&rft_dat=%3Cproquest_cross%3E2576696774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576696774&rft_id=info:pmid/34431624&rfr_iscdi=true |