Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention

Objective Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been asses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Obesity (Silver Spring, Md.) Md.), 2021-10, Vol.29 (10), p.1596-1605
Hauptverfasser: Dahle, Jared H., Ostendorf, Danielle M., Pan, Zhaoxing, MacLean, Paul S., Bessesen, Daniel H., Heymsfield, Steven B., Melanson, Edward L., Catenacci, Victoria A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 10
container_start_page 1596
container_title Obesity (Silver Spring, Md.)
container_volume 29
creator Dahle, Jared H.
Ostendorf, Danielle M.
Pan, Zhaoxing
MacLean, Paul S.
Bessesen, Daniel H.
Heymsfield, Steven B.
Melanson, Edward L.
Catenacci, Victoria A.
description Objective Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention. Methods Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial. Results All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p < 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p < 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01). Conclusions Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.
doi_str_mv 10.1002/oby.23234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564488998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576696774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</originalsourceid><addsrcrecordid>eNp10T9P3DAYBnALUcGVduALIEssZTjwP-JkhBMUJCQWqrZTZDtv7owSO2cnXLOxdutn5JPg4ygDEpNt6efHfvQitE_JMSWEnXg9HjPOuNhCE1pwMpW8-LX9ts_pLvoc4z0hIiOndAftciE4zZiYoL8_wc4XPVauwtpXIza-7Xy0vfUOm4Vyc4hY1TWYHgeIvXVzDA7CfMTwpwNX2X4IgLsAlTW9fQAMy0Gtb0dcDWHNFabs6fFf612_wKuX59Kx8TFi63oID-DW_gv6VKsmwtfXdQ_9uLy4m11Nb26_X8_ObqaG57mYpk6GKCOoJERLUetaSpIXBTCeiZplCmqtC6CpoE6e6CKXDLgBw4ASI_ke-rbJ7YJfDqlS2dpooGmUAz_Ekp1mQuQpMU_08B2990Nw6XdJySwrMilFUkcbZULqFKAuu2BbFcaSknI9nzLNp3yZT7IHr4mDbqF6k_8HksDJBqxsA-PHSeXt-e9N5DO7Z54V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576696774</pqid></control><display><type>article</type><title>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Dahle, Jared H. ; Ostendorf, Danielle M. ; Pan, Zhaoxing ; MacLean, Paul S. ; Bessesen, Daniel H. ; Heymsfield, Steven B. ; Melanson, Edward L. ; Catenacci, Victoria A.</creator><creatorcontrib>Dahle, Jared H. ; Ostendorf, Danielle M. ; Pan, Zhaoxing ; MacLean, Paul S. ; Bessesen, Daniel H. ; Heymsfield, Steven B. ; Melanson, Edward L. ; Catenacci, Victoria A.</creatorcontrib><description>Objective Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention. Methods Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial. Results All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p &lt; 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p &lt; 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01). Conclusions Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.</description><identifier>ISSN: 1930-7381</identifier><identifier>ISSN: 1930-739X</identifier><identifier>EISSN: 1930-739X</identifier><identifier>DOI: 10.1002/oby.23234</identifier><identifier>PMID: 34431624</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Basal Metabolism ; Bias ; Body Composition ; Body Mass Index ; Calorimetry, Indirect ; Diabetes ; Energy ; Energy Metabolism ; Exercise ; Female ; Humans ; Intervention ; Male ; Mathematical models ; Metabolism ; Obesity ; Overweight ; Physical fitness ; Predictive Value of Tests ; Reproducibility of Results ; Validity ; Weight control</subject><ispartof>Obesity (Silver Spring, Md.), 2021-10, Vol.29 (10), p.1596-1605</ispartof><rights>2021 The Obesity Society (TOS). This article has been contributed to by US Government employees and their work is in the public domain in the USA.</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</citedby><cites>FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</cites><orcidid>0000-0002-8686-0153 ; 0000-0001-9723-3748 ; 0000-0003-1127-9425 ; 0000-0001-9151-9745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foby.23234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foby.23234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34431624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahle, Jared H.</creatorcontrib><creatorcontrib>Ostendorf, Danielle M.</creatorcontrib><creatorcontrib>Pan, Zhaoxing</creatorcontrib><creatorcontrib>MacLean, Paul S.</creatorcontrib><creatorcontrib>Bessesen, Daniel H.</creatorcontrib><creatorcontrib>Heymsfield, Steven B.</creatorcontrib><creatorcontrib>Melanson, Edward L.</creatorcontrib><creatorcontrib>Catenacci, Victoria A.</creatorcontrib><title>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</title><title>Obesity (Silver Spring, Md.)</title><addtitle>Obesity (Silver Spring)</addtitle><description>Objective Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention. Methods Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial. Results All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p &lt; 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p &lt; 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01). Conclusions Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.</description><subject>Accuracy</subject><subject>Basal Metabolism</subject><subject>Bias</subject><subject>Body Composition</subject><subject>Body Mass Index</subject><subject>Calorimetry, Indirect</subject><subject>Diabetes</subject><subject>Energy</subject><subject>Energy Metabolism</subject><subject>Exercise</subject><subject>Female</subject><subject>Humans</subject><subject>Intervention</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Obesity</subject><subject>Overweight</subject><subject>Physical fitness</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Validity</subject><subject>Weight control</subject><issn>1930-7381</issn><issn>1930-739X</issn><issn>1930-739X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10T9P3DAYBnALUcGVduALIEssZTjwP-JkhBMUJCQWqrZTZDtv7owSO2cnXLOxdutn5JPg4ygDEpNt6efHfvQitE_JMSWEnXg9HjPOuNhCE1pwMpW8-LX9ts_pLvoc4z0hIiOndAftciE4zZiYoL8_wc4XPVauwtpXIza-7Xy0vfUOm4Vyc4hY1TWYHgeIvXVzDA7CfMTwpwNX2X4IgLsAlTW9fQAMy0Gtb0dcDWHNFabs6fFf612_wKuX59Kx8TFi63oID-DW_gv6VKsmwtfXdQ_9uLy4m11Nb26_X8_ObqaG57mYpk6GKCOoJERLUetaSpIXBTCeiZplCmqtC6CpoE6e6CKXDLgBw4ASI_ke-rbJ7YJfDqlS2dpooGmUAz_Ekp1mQuQpMU_08B2990Nw6XdJySwrMilFUkcbZULqFKAuu2BbFcaSknI9nzLNp3yZT7IHr4mDbqF6k_8HksDJBqxsA-PHSeXt-e9N5DO7Z54V</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Dahle, Jared H.</creator><creator>Ostendorf, Danielle M.</creator><creator>Pan, Zhaoxing</creator><creator>MacLean, Paul S.</creator><creator>Bessesen, Daniel H.</creator><creator>Heymsfield, Steven B.</creator><creator>Melanson, Edward L.</creator><creator>Catenacci, Victoria A.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8686-0153</orcidid><orcidid>https://orcid.org/0000-0001-9723-3748</orcidid><orcidid>https://orcid.org/0000-0003-1127-9425</orcidid><orcidid>https://orcid.org/0000-0001-9151-9745</orcidid></search><sort><creationdate>202110</creationdate><title>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</title><author>Dahle, Jared H. ; Ostendorf, Danielle M. ; Pan, Zhaoxing ; MacLean, Paul S. ; Bessesen, Daniel H. ; Heymsfield, Steven B. ; Melanson, Edward L. ; Catenacci, Victoria A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-193c0ac41700b74fbf770899e2364f26aefbb9e1431b8840b9872e3cec2e10c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Basal Metabolism</topic><topic>Bias</topic><topic>Body Composition</topic><topic>Body Mass Index</topic><topic>Calorimetry, Indirect</topic><topic>Diabetes</topic><topic>Energy</topic><topic>Energy Metabolism</topic><topic>Exercise</topic><topic>Female</topic><topic>Humans</topic><topic>Intervention</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Obesity</topic><topic>Overweight</topic><topic>Physical fitness</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Validity</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahle, Jared H.</creatorcontrib><creatorcontrib>Ostendorf, Danielle M.</creatorcontrib><creatorcontrib>Pan, Zhaoxing</creatorcontrib><creatorcontrib>MacLean, Paul S.</creatorcontrib><creatorcontrib>Bessesen, Daniel H.</creatorcontrib><creatorcontrib>Heymsfield, Steven B.</creatorcontrib><creatorcontrib>Melanson, Edward L.</creatorcontrib><creatorcontrib>Catenacci, Victoria A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Obesity (Silver Spring, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahle, Jared H.</au><au>Ostendorf, Danielle M.</au><au>Pan, Zhaoxing</au><au>MacLean, Paul S.</au><au>Bessesen, Daniel H.</au><au>Heymsfield, Steven B.</au><au>Melanson, Edward L.</au><au>Catenacci, Victoria A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention</atitle><jtitle>Obesity (Silver Spring, Md.)</jtitle><addtitle>Obesity (Silver Spring)</addtitle><date>2021-10</date><risdate>2021</risdate><volume>29</volume><issue>10</issue><spage>1596</spage><epage>1605</epage><pages>1596-1605</pages><issn>1930-7381</issn><issn>1930-739X</issn><eissn>1930-739X</eissn><abstract>Objective Mathematical equations that predict resting energy expenditure (REE) are widely used to derive calorie prescriptions during weight‐loss interventions. Although such equations are known to introduce group‐ and individual‐level error into REE prediction, their validity has largely been assessed in weight‐stable populations. Therefore, this study sought to characterize how weight change affects the validity of commonly used REE predictive models throughout a 12‐month weight‐loss intervention. Methods Changes in predictive error of four models (Mifflin‐St‐Jeor, Harris‐Benedict, Owen, and World Health Organization/Food and Agriculture) were assessed at 1‐, 6‐, and 12‐month time points in adults (n = 66, 76% female, aged 18‐55 years, BMI = 27‐45 kg/m2) enrolled in a randomized clinical weight‐loss trial. Results All equations experienced significant negative shifts in bias (measured − predicted REE) toward overprediction from baseline to 1 month (p &lt; 0.05). Three equations showed reversal of bias in the positive direction (toward underprediction) from baseline to 12 months (p &lt; 0.05). Early changes in bias were correlated with decreased fat‐free mass (p ≤ 0.01). Conclusions Changes in body composition and mass during a 12‐month weight‐loss intervention significantly affected REE predictive error in adults with overweight and obesity. Weight history should be considered when using mathematical models to predict REE during periods of weight fluctuation.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34431624</pmid><doi>10.1002/oby.23234</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8686-0153</orcidid><orcidid>https://orcid.org/0000-0001-9723-3748</orcidid><orcidid>https://orcid.org/0000-0003-1127-9425</orcidid><orcidid>https://orcid.org/0000-0001-9151-9745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1930-7381
ispartof Obesity (Silver Spring, Md.), 2021-10, Vol.29 (10), p.1596-1605
issn 1930-7381
1930-739X
1930-739X
language eng
recordid cdi_proquest_miscellaneous_2564488998
source MEDLINE; Wiley Free Content; Wiley Online Library All Journals
subjects Accuracy
Basal Metabolism
Bias
Body Composition
Body Mass Index
Calorimetry, Indirect
Diabetes
Energy
Energy Metabolism
Exercise
Female
Humans
Intervention
Male
Mathematical models
Metabolism
Obesity
Overweight
Physical fitness
Predictive Value of Tests
Reproducibility of Results
Validity
Weight control
title Weight and body composition changes affect resting energy expenditure predictive equations during a 12‐month weight‐loss intervention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight%20and%20body%20composition%20changes%20affect%20resting%20energy%20expenditure%20predictive%20equations%20during%20a%2012%E2%80%90month%20weight%E2%80%90loss%20intervention&rft.jtitle=Obesity%20(Silver%20Spring,%20Md.)&rft.au=Dahle,%20Jared%20H.&rft.date=2021-10&rft.volume=29&rft.issue=10&rft.spage=1596&rft.epage=1605&rft.pages=1596-1605&rft.issn=1930-7381&rft.eissn=1930-739X&rft_id=info:doi/10.1002/oby.23234&rft_dat=%3Cproquest_cross%3E2576696774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576696774&rft_id=info:pmid/34431624&rfr_iscdi=true