Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures

A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-09, Vol.13 (35), p.42005-42013
Hauptverfasser: Nowak, Andrew P, Gross, Adam F, Sherman, Elena, Rodriguez, April R, Ventuleth, Michael, Nelson, Ashley M, Guan, Sharon, Gervasoni, Michael, Graetz, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42013
container_issue 35
container_start_page 42005
container_title ACS applied materials & interfaces
container_volume 13
creator Nowak, Andrew P
Gross, Adam F
Sherman, Elena
Rodriguez, April R
Ventuleth, Michael
Nelson, Ashley M
Guan, Sharon
Gervasoni, Michael
Graetz, Jason
description A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly­(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice < 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly­(tetramethylene oxide) to investigate performance drivers.
doi_str_mv 10.1021/acsami.1c10838
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564138160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564138160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXU_ssnmKK0fhYqF6sFTmGxn7ZZ8ubtR_O-NpHjzNMO83xt4L4ouGZ0xytkNaA-1nTHNqBLqKJqwPElixSU__tuT5DQ6835PaSo4lZPobdFDReZt3bUNNoGswXv7iWSpsdu1pdWDBsE275582bAjT1a7tok3Giok6x14jDfYgYOAWyIWZBNcr0Pv0J9HJwYqjxeHOY1e7-9e5o_x6vlhOb9dxSBoFmLFjNI6lSKTKMukVDLJE2UEAC15LkAZliLXkgks0ZgcUGyVZmVmykzKnItpdDX-7Vz70aMPRW29xqqCBtveF1ymCROKpXRAZyM6ZPDeoSk6Z2tw3wWjxW-HxdhhcehwMFyPhuFe7NveNUOS_-AfwxB0PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564138160</pqid></control><display><type>article</type><title>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</title><source>American Chemical Society Journals</source><creator>Nowak, Andrew P ; Gross, Adam F ; Sherman, Elena ; Rodriguez, April R ; Ventuleth, Michael ; Nelson, Ashley M ; Guan, Sharon ; Gervasoni, Michael ; Graetz, Jason</creator><creatorcontrib>Nowak, Andrew P ; Gross, Adam F ; Sherman, Elena ; Rodriguez, April R ; Ventuleth, Michael ; Nelson, Ashley M ; Guan, Sharon ; Gervasoni, Michael ; Graetz, Jason</creatorcontrib><description>A passive icephobic coating (τice &lt; 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly­(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice &lt; 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly­(tetramethylene oxide) to investigate performance drivers.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c10838</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2021-09, Vol.13 (35), p.42005-42013</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</citedby><cites>FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</cites><orcidid>0000-0002-0156-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c10838$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c10838$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Nowak, Andrew P</creatorcontrib><creatorcontrib>Gross, Adam F</creatorcontrib><creatorcontrib>Sherman, Elena</creatorcontrib><creatorcontrib>Rodriguez, April R</creatorcontrib><creatorcontrib>Ventuleth, Michael</creatorcontrib><creatorcontrib>Nelson, Ashley M</creatorcontrib><creatorcontrib>Guan, Sharon</creatorcontrib><creatorcontrib>Gervasoni, Michael</creatorcontrib><creatorcontrib>Graetz, Jason</creatorcontrib><title>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A passive icephobic coating (τice &lt; 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly­(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice &lt; 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly­(tetramethylene oxide) to investigate performance drivers.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXU_ssnmKK0fhYqF6sFTmGxn7ZZ8ubtR_O-NpHjzNMO83xt4L4ouGZ0xytkNaA-1nTHNqBLqKJqwPElixSU__tuT5DQ6835PaSo4lZPobdFDReZt3bUNNoGswXv7iWSpsdu1pdWDBsE275582bAjT1a7tok3Giok6x14jDfYgYOAWyIWZBNcr0Pv0J9HJwYqjxeHOY1e7-9e5o_x6vlhOb9dxSBoFmLFjNI6lSKTKMukVDLJE2UEAC15LkAZliLXkgks0ZgcUGyVZmVmykzKnItpdDX-7Vz70aMPRW29xqqCBtveF1ymCROKpXRAZyM6ZPDeoSk6Z2tw3wWjxW-HxdhhcehwMFyPhuFe7NveNUOS_-AfwxB0PA</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Nowak, Andrew P</creator><creator>Gross, Adam F</creator><creator>Sherman, Elena</creator><creator>Rodriguez, April R</creator><creator>Ventuleth, Michael</creator><creator>Nelson, Ashley M</creator><creator>Guan, Sharon</creator><creator>Gervasoni, Michael</creator><creator>Graetz, Jason</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0156-7792</orcidid></search><sort><creationdate>20210908</creationdate><title>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</title><author>Nowak, Andrew P ; Gross, Adam F ; Sherman, Elena ; Rodriguez, April R ; Ventuleth, Michael ; Nelson, Ashley M ; Guan, Sharon ; Gervasoni, Michael ; Graetz, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, Andrew P</creatorcontrib><creatorcontrib>Gross, Adam F</creatorcontrib><creatorcontrib>Sherman, Elena</creatorcontrib><creatorcontrib>Rodriguez, April R</creatorcontrib><creatorcontrib>Ventuleth, Michael</creatorcontrib><creatorcontrib>Nelson, Ashley M</creatorcontrib><creatorcontrib>Guan, Sharon</creatorcontrib><creatorcontrib>Gervasoni, Michael</creatorcontrib><creatorcontrib>Graetz, Jason</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, Andrew P</au><au>Gross, Adam F</au><au>Sherman, Elena</au><au>Rodriguez, April R</au><au>Ventuleth, Michael</au><au>Nelson, Ashley M</au><au>Guan, Sharon</au><au>Gervasoni, Michael</au><au>Graetz, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-09-08</date><risdate>2021</risdate><volume>13</volume><issue>35</issue><spage>42005</spage><epage>42013</epage><pages>42005-42013</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A passive icephobic coating (τice &lt; 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly­(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice &lt; 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly­(tetramethylene oxide) to investigate performance drivers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c10838</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0156-7792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-09, Vol.13 (35), p.42005-42013
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2564138160
source American Chemical Society Journals
subjects Applications of Polymer, Composite, and Coating Materials
title Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Component%20Passive%20Icephobic%20Coatings%20with%20Micron-Scale%20Phase-Separated%203D%20Structures&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nowak,%20Andrew%20P&rft.date=2021-09-08&rft.volume=13&rft.issue=35&rft.spage=42005&rft.epage=42013&rft.pages=42005-42013&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c10838&rft_dat=%3Cproquest_cross%3E2564138160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564138160&rft_id=info:pmid/&rfr_iscdi=true