Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures
A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low su...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-09, Vol.13 (35), p.42005-42013 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42013 |
---|---|
container_issue | 35 |
container_start_page | 42005 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Nowak, Andrew P Gross, Adam F Sherman, Elena Rodriguez, April R Ventuleth, Michael Nelson, Ashley M Guan, Sharon Gervasoni, Michael Graetz, Jason |
description | A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice < 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly(tetramethylene oxide) to investigate performance drivers. |
doi_str_mv | 10.1021/acsami.1c10838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564138160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564138160</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXU_ssnmKK0fhYqF6sFTmGxn7ZZ8ubtR_O-NpHjzNMO83xt4L4ouGZ0xytkNaA-1nTHNqBLqKJqwPElixSU__tuT5DQ6835PaSo4lZPobdFDReZt3bUNNoGswXv7iWSpsdu1pdWDBsE275582bAjT1a7tok3Giok6x14jDfYgYOAWyIWZBNcr0Pv0J9HJwYqjxeHOY1e7-9e5o_x6vlhOb9dxSBoFmLFjNI6lSKTKMukVDLJE2UEAC15LkAZliLXkgks0ZgcUGyVZmVmykzKnItpdDX-7Vz70aMPRW29xqqCBtveF1ymCROKpXRAZyM6ZPDeoSk6Z2tw3wWjxW-HxdhhcehwMFyPhuFe7NveNUOS_-AfwxB0PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564138160</pqid></control><display><type>article</type><title>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</title><source>American Chemical Society Journals</source><creator>Nowak, Andrew P ; Gross, Adam F ; Sherman, Elena ; Rodriguez, April R ; Ventuleth, Michael ; Nelson, Ashley M ; Guan, Sharon ; Gervasoni, Michael ; Graetz, Jason</creator><creatorcontrib>Nowak, Andrew P ; Gross, Adam F ; Sherman, Elena ; Rodriguez, April R ; Ventuleth, Michael ; Nelson, Ashley M ; Guan, Sharon ; Gervasoni, Michael ; Graetz, Jason</creatorcontrib><description>A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice < 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly(tetramethylene oxide) to investigate performance drivers.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c10838</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials & interfaces, 2021-09, Vol.13 (35), p.42005-42013</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</citedby><cites>FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</cites><orcidid>0000-0002-0156-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c10838$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c10838$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Nowak, Andrew P</creatorcontrib><creatorcontrib>Gross, Adam F</creatorcontrib><creatorcontrib>Sherman, Elena</creatorcontrib><creatorcontrib>Rodriguez, April R</creatorcontrib><creatorcontrib>Ventuleth, Michael</creatorcontrib><creatorcontrib>Nelson, Ashley M</creatorcontrib><creatorcontrib>Guan, Sharon</creatorcontrib><creatorcontrib>Gervasoni, Michael</creatorcontrib><creatorcontrib>Graetz, Jason</creatorcontrib><title>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice < 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly(tetramethylene oxide) to investigate performance drivers.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXU_ssnmKK0fhYqF6sFTmGxn7ZZ8ubtR_O-NpHjzNMO83xt4L4ouGZ0xytkNaA-1nTHNqBLqKJqwPElixSU__tuT5DQ6835PaSo4lZPobdFDReZt3bUNNoGswXv7iWSpsdu1pdWDBsE275582bAjT1a7tok3Giok6x14jDfYgYOAWyIWZBNcr0Pv0J9HJwYqjxeHOY1e7-9e5o_x6vlhOb9dxSBoFmLFjNI6lSKTKMukVDLJE2UEAC15LkAZliLXkgks0ZgcUGyVZmVmykzKnItpdDX-7Vz70aMPRW29xqqCBtveF1ymCROKpXRAZyM6ZPDeoSk6Z2tw3wWjxW-HxdhhcehwMFyPhuFe7NveNUOS_-AfwxB0PA</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Nowak, Andrew P</creator><creator>Gross, Adam F</creator><creator>Sherman, Elena</creator><creator>Rodriguez, April R</creator><creator>Ventuleth, Michael</creator><creator>Nelson, Ashley M</creator><creator>Guan, Sharon</creator><creator>Gervasoni, Michael</creator><creator>Graetz, Jason</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0156-7792</orcidid></search><sort><creationdate>20210908</creationdate><title>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</title><author>Nowak, Andrew P ; Gross, Adam F ; Sherman, Elena ; Rodriguez, April R ; Ventuleth, Michael ; Nelson, Ashley M ; Guan, Sharon ; Gervasoni, Michael ; Graetz, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-81f8cc65375e5b4b854948f3aa0b293a8f16e2c513ebeff9ae3d8c1b7fb755923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, Andrew P</creatorcontrib><creatorcontrib>Gross, Adam F</creatorcontrib><creatorcontrib>Sherman, Elena</creatorcontrib><creatorcontrib>Rodriguez, April R</creatorcontrib><creatorcontrib>Ventuleth, Michael</creatorcontrib><creatorcontrib>Nelson, Ashley M</creatorcontrib><creatorcontrib>Guan, Sharon</creatorcontrib><creatorcontrib>Gervasoni, Michael</creatorcontrib><creatorcontrib>Graetz, Jason</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, Andrew P</au><au>Gross, Adam F</au><au>Sherman, Elena</au><au>Rodriguez, April R</au><au>Ventuleth, Michael</au><au>Nelson, Ashley M</au><au>Guan, Sharon</au><au>Gervasoni, Michael</au><au>Graetz, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-09-08</date><risdate>2021</risdate><volume>13</volume><issue>35</issue><spage>42005</spage><epage>42013</epage><pages>42005-42013</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A passive icephobic coating (τice < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1–100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness. Spray application produces a solid, mechanically tough film free of additive fluids or sacrificial elements, demonstrating exceptional ice adhesion reduction up to 1000× lower versus aluminum (τice < 1 kPa), as measured under environmentally realistic accretion and centrifugal test shedding conditions. Finally, the modular nature of the synthetic system allows PEG and PFPE to be exchanged for poly(tetramethylene oxide) to investigate performance drivers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c10838</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0156-7792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-09, Vol.13 (35), p.42005-42013 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2564138160 |
source | American Chemical Society Journals |
subjects | Applications of Polymer, Composite, and Coating Materials |
title | Dual Component Passive Icephobic Coatings with Micron-Scale Phase-Separated 3D Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Component%20Passive%20Icephobic%20Coatings%20with%20Micron-Scale%20Phase-Separated%203D%20Structures&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nowak,%20Andrew%20P&rft.date=2021-09-08&rft.volume=13&rft.issue=35&rft.spage=42005&rft.epage=42013&rft.pages=42005-42013&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c10838&rft_dat=%3Cproquest_cross%3E2564138160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564138160&rft_id=info:pmid/&rfr_iscdi=true |