A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen

Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2021-10, Vol.142, p.112047-112047, Article 112047
Hauptverfasser: Chiwala, Gift, Liu, Zhiyong, Mugweru, Julius N., Wang, Bangxing, Khan, Shahzad Akbar, Bate, Petuel Ndip Ndip, Yusuf, Buhari, Hameed, H.M. Adnan, Fang, Cuiting, Tan, Yaoju, Guan, Ping, Hu, Jinxing, Tan, Shouyong, Liu, Jianxiong, Zhong, Nanshan, Zhang, Tianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112047
container_issue
container_start_page 112047
container_title Biomedicine & pharmacotherapy
container_volume 142
creator Chiwala, Gift
Liu, Zhiyong
Mugweru, Julius N.
Wang, Bangxing
Khan, Shahzad Akbar
Bate, Petuel Ndip Ndip
Yusuf, Buhari
Hameed, H.M. Adnan
Fang, Cuiting
Tan, Yaoju
Guan, Ping
Hu, Jinxing
Tan, Shouyong
Liu, Jianxiong
Zhong, Nanshan
Zhang, Tianyu
description Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine’s safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG’s therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the “recombinant” plus “drug-resistant” BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB. [Display omitted] •The RdrBCG-I overexpressing Ag85B + Rv2628 is stable both in vitro and in vivo.•The RdrBCG-I was safe and nonvirulent even to SCID mice.•The RdrBCG-I enhanced the activity of a second-line regimen in a murine model.•The RdrBCG facilitated lung tissue recovery.
doi_str_mv 10.1016/j.biopha.2021.112047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564132151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0753332221008301</els_id><sourcerecordid>2564132151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-664180d9560265a4ad4aad6be116658808728103541e313f791f0574dcf853843</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhHyDkI5eE8WeyF6SygoJUxAXOlmNPul4l8WI7K_XIP69XWzhymsO8H5pnCHnLoGXA9IdDO4R43NuWA2ctYxxk94xs2FZBowG652QDnRKNEJxfkVc5HwBAadG_JFdCSq65hg35c0MTujgPYbFLoRkndCWckPq03jcJc8jlvPje0iGeQqafdrcUl71dHGZa9kgH6wqm4IK3E7VncygPNI7U1jQXF99MYUFaQ0JT1gGTW6dYY2vvfZhxeU1ejHbK-OZpXpNfXz7_3H1t7n7cftvd3DVOQl8arSXrwW-VBq6VldZLa70ekDGtVd9D3_GegVCSoWBi7LZsBNVJ78ZeiV6Ka_L-kntM8feKuZg5ZIfTZBeMazZc1QbBmWJVKi9Sl2LOCUdzTGG26cEwMGf45mAu8M0ZvrnAr7Z3Tw3rMKP_Z_pLuwo-XgRY7zwFTCa7gJWkD_UJxfgY_t_wCOlGlvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564132151</pqid></control><display><type>article</type><title>A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chiwala, Gift ; Liu, Zhiyong ; Mugweru, Julius N. ; Wang, Bangxing ; Khan, Shahzad Akbar ; Bate, Petuel Ndip Ndip ; Yusuf, Buhari ; Hameed, H.M. Adnan ; Fang, Cuiting ; Tan, Yaoju ; Guan, Ping ; Hu, Jinxing ; Tan, Shouyong ; Liu, Jianxiong ; Zhong, Nanshan ; Zhang, Tianyu</creator><creatorcontrib>Chiwala, Gift ; Liu, Zhiyong ; Mugweru, Julius N. ; Wang, Bangxing ; Khan, Shahzad Akbar ; Bate, Petuel Ndip Ndip ; Yusuf, Buhari ; Hameed, H.M. Adnan ; Fang, Cuiting ; Tan, Yaoju ; Guan, Ping ; Hu, Jinxing ; Tan, Shouyong ; Liu, Jianxiong ; Zhong, Nanshan ; Zhang, Tianyu</creatorcontrib><description>Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine’s safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG’s therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the “recombinant” plus “drug-resistant” BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB. [Display omitted] •The RdrBCG-I overexpressing Ag85B + Rv2628 is stable both in vitro and in vivo.•The RdrBCG-I was safe and nonvirulent even to SCID mice.•The RdrBCG-I enhanced the activity of a second-line regimen in a murine model.•The RdrBCG facilitated lung tissue recovery.</description><identifier>ISSN: 0753-3322</identifier><identifier>EISSN: 1950-6007</identifier><identifier>DOI: 10.1016/j.biopha.2021.112047</identifier><identifier>PMID: 34426260</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Ag85B ; Amikacin - pharmacology ; Amikacin - therapeutic use ; Animals ; Antigens, Bacterial - biosynthesis ; Antigens, Bacterial - genetics ; Antigens, Bacterial - immunology ; Antitubercular Agents - pharmacology ; Antitubercular Agents - therapeutic use ; BCG Vaccine - biosynthesis ; BCG Vaccine - genetics ; BCG Vaccine - immunology ; BCG Vaccine - therapeutic use ; Disease Models, Animal ; Drug Resistance, Bacterial - genetics ; Drug-resistant tuberculosis ; Levofloxacin - pharmacology ; Levofloxacin - therapeutic use ; Mice ; Mice, Inbred BALB C ; Mice, SCID ; Mycobacterium bovis - chemistry ; Mycobacterium bovis - drug effects ; Mycobacterium bovis - genetics ; Mycobacterium tuberculosis - drug effects ; Mycobacterium tuberculosis - pathogenicity ; Plasmids ; Prothionamide - pharmacology ; Prothionamide - therapeutic use ; Pyrazinamide - pharmacology ; Pyrazinamide - therapeutic use ; Recombinant drug-resistant BCG ; Rv2628 ; Therapeutic vaccine ; Tuberculosis, Pulmonary - drug therapy ; Tuberculosis, Pulmonary - pathology ; Tuberculosis, Pulmonary - prevention &amp; control ; Vaccines, Synthetic - biosynthesis ; Vaccines, Synthetic - genetics ; Vaccines, Synthetic - immunology ; Vaccines, Synthetic - therapeutic use ; Virulence</subject><ispartof>Biomedicine &amp; pharmacotherapy, 2021-10, Vol.142, p.112047-112047, Article 112047</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-664180d9560265a4ad4aad6be116658808728103541e313f791f0574dcf853843</citedby><cites>FETCH-LOGICAL-c408t-664180d9560265a4ad4aad6be116658808728103541e313f791f0574dcf853843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0753332221008301$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34426260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiwala, Gift</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Mugweru, Julius N.</creatorcontrib><creatorcontrib>Wang, Bangxing</creatorcontrib><creatorcontrib>Khan, Shahzad Akbar</creatorcontrib><creatorcontrib>Bate, Petuel Ndip Ndip</creatorcontrib><creatorcontrib>Yusuf, Buhari</creatorcontrib><creatorcontrib>Hameed, H.M. Adnan</creatorcontrib><creatorcontrib>Fang, Cuiting</creatorcontrib><creatorcontrib>Tan, Yaoju</creatorcontrib><creatorcontrib>Guan, Ping</creatorcontrib><creatorcontrib>Hu, Jinxing</creatorcontrib><creatorcontrib>Tan, Shouyong</creatorcontrib><creatorcontrib>Liu, Jianxiong</creatorcontrib><creatorcontrib>Zhong, Nanshan</creatorcontrib><creatorcontrib>Zhang, Tianyu</creatorcontrib><title>A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen</title><title>Biomedicine &amp; pharmacotherapy</title><addtitle>Biomed Pharmacother</addtitle><description>Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine’s safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG’s therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the “recombinant” plus “drug-resistant” BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB. [Display omitted] •The RdrBCG-I overexpressing Ag85B + Rv2628 is stable both in vitro and in vivo.•The RdrBCG-I was safe and nonvirulent even to SCID mice.•The RdrBCG-I enhanced the activity of a second-line regimen in a murine model.•The RdrBCG facilitated lung tissue recovery.</description><subject>Ag85B</subject><subject>Amikacin - pharmacology</subject><subject>Amikacin - therapeutic use</subject><subject>Animals</subject><subject>Antigens, Bacterial - biosynthesis</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - immunology</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Antitubercular Agents - therapeutic use</subject><subject>BCG Vaccine - biosynthesis</subject><subject>BCG Vaccine - genetics</subject><subject>BCG Vaccine - immunology</subject><subject>BCG Vaccine - therapeutic use</subject><subject>Disease Models, Animal</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Drug-resistant tuberculosis</subject><subject>Levofloxacin - pharmacology</subject><subject>Levofloxacin - therapeutic use</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, SCID</subject><subject>Mycobacterium bovis - chemistry</subject><subject>Mycobacterium bovis - drug effects</subject><subject>Mycobacterium bovis - genetics</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Plasmids</subject><subject>Prothionamide - pharmacology</subject><subject>Prothionamide - therapeutic use</subject><subject>Pyrazinamide - pharmacology</subject><subject>Pyrazinamide - therapeutic use</subject><subject>Recombinant drug-resistant BCG</subject><subject>Rv2628</subject><subject>Therapeutic vaccine</subject><subject>Tuberculosis, Pulmonary - drug therapy</subject><subject>Tuberculosis, Pulmonary - pathology</subject><subject>Tuberculosis, Pulmonary - prevention &amp; control</subject><subject>Vaccines, Synthetic - biosynthesis</subject><subject>Vaccines, Synthetic - genetics</subject><subject>Vaccines, Synthetic - immunology</subject><subject>Vaccines, Synthetic - therapeutic use</subject><subject>Virulence</subject><issn>0753-3322</issn><issn>1950-6007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhHyDkI5eE8WeyF6SygoJUxAXOlmNPul4l8WI7K_XIP69XWzhymsO8H5pnCHnLoGXA9IdDO4R43NuWA2ctYxxk94xs2FZBowG652QDnRKNEJxfkVc5HwBAadG_JFdCSq65hg35c0MTujgPYbFLoRkndCWckPq03jcJc8jlvPje0iGeQqafdrcUl71dHGZa9kgH6wqm4IK3E7VncygPNI7U1jQXF99MYUFaQ0JT1gGTW6dYY2vvfZhxeU1ejHbK-OZpXpNfXz7_3H1t7n7cftvd3DVOQl8arSXrwW-VBq6VldZLa70ekDGtVd9D3_GegVCSoWBi7LZsBNVJ78ZeiV6Ka_L-kntM8feKuZg5ZIfTZBeMazZc1QbBmWJVKi9Sl2LOCUdzTGG26cEwMGf45mAu8M0ZvrnAr7Z3Tw3rMKP_Z_pLuwo-XgRY7zwFTCa7gJWkD_UJxfgY_t_wCOlGlvI</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Chiwala, Gift</creator><creator>Liu, Zhiyong</creator><creator>Mugweru, Julius N.</creator><creator>Wang, Bangxing</creator><creator>Khan, Shahzad Akbar</creator><creator>Bate, Petuel Ndip Ndip</creator><creator>Yusuf, Buhari</creator><creator>Hameed, H.M. Adnan</creator><creator>Fang, Cuiting</creator><creator>Tan, Yaoju</creator><creator>Guan, Ping</creator><creator>Hu, Jinxing</creator><creator>Tan, Shouyong</creator><creator>Liu, Jianxiong</creator><creator>Zhong, Nanshan</creator><creator>Zhang, Tianyu</creator><general>Elsevier Masson SAS</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen</title><author>Chiwala, Gift ; Liu, Zhiyong ; Mugweru, Julius N. ; Wang, Bangxing ; Khan, Shahzad Akbar ; Bate, Petuel Ndip Ndip ; Yusuf, Buhari ; Hameed, H.M. Adnan ; Fang, Cuiting ; Tan, Yaoju ; Guan, Ping ; Hu, Jinxing ; Tan, Shouyong ; Liu, Jianxiong ; Zhong, Nanshan ; Zhang, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-664180d9560265a4ad4aad6be116658808728103541e313f791f0574dcf853843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ag85B</topic><topic>Amikacin - pharmacology</topic><topic>Amikacin - therapeutic use</topic><topic>Animals</topic><topic>Antigens, Bacterial - biosynthesis</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - immunology</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Antitubercular Agents - therapeutic use</topic><topic>BCG Vaccine - biosynthesis</topic><topic>BCG Vaccine - genetics</topic><topic>BCG Vaccine - immunology</topic><topic>BCG Vaccine - therapeutic use</topic><topic>Disease Models, Animal</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Drug-resistant tuberculosis</topic><topic>Levofloxacin - pharmacology</topic><topic>Levofloxacin - therapeutic use</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, SCID</topic><topic>Mycobacterium bovis - chemistry</topic><topic>Mycobacterium bovis - drug effects</topic><topic>Mycobacterium bovis - genetics</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Plasmids</topic><topic>Prothionamide - pharmacology</topic><topic>Prothionamide - therapeutic use</topic><topic>Pyrazinamide - pharmacology</topic><topic>Pyrazinamide - therapeutic use</topic><topic>Recombinant drug-resistant BCG</topic><topic>Rv2628</topic><topic>Therapeutic vaccine</topic><topic>Tuberculosis, Pulmonary - drug therapy</topic><topic>Tuberculosis, Pulmonary - pathology</topic><topic>Tuberculosis, Pulmonary - prevention &amp; control</topic><topic>Vaccines, Synthetic - biosynthesis</topic><topic>Vaccines, Synthetic - genetics</topic><topic>Vaccines, Synthetic - immunology</topic><topic>Vaccines, Synthetic - therapeutic use</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiwala, Gift</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Mugweru, Julius N.</creatorcontrib><creatorcontrib>Wang, Bangxing</creatorcontrib><creatorcontrib>Khan, Shahzad Akbar</creatorcontrib><creatorcontrib>Bate, Petuel Ndip Ndip</creatorcontrib><creatorcontrib>Yusuf, Buhari</creatorcontrib><creatorcontrib>Hameed, H.M. Adnan</creatorcontrib><creatorcontrib>Fang, Cuiting</creatorcontrib><creatorcontrib>Tan, Yaoju</creatorcontrib><creatorcontrib>Guan, Ping</creatorcontrib><creatorcontrib>Hu, Jinxing</creatorcontrib><creatorcontrib>Tan, Shouyong</creatorcontrib><creatorcontrib>Liu, Jianxiong</creatorcontrib><creatorcontrib>Zhong, Nanshan</creatorcontrib><creatorcontrib>Zhang, Tianyu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedicine &amp; pharmacotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiwala, Gift</au><au>Liu, Zhiyong</au><au>Mugweru, Julius N.</au><au>Wang, Bangxing</au><au>Khan, Shahzad Akbar</au><au>Bate, Petuel Ndip Ndip</au><au>Yusuf, Buhari</au><au>Hameed, H.M. Adnan</au><au>Fang, Cuiting</au><au>Tan, Yaoju</au><au>Guan, Ping</au><au>Hu, Jinxing</au><au>Tan, Shouyong</au><au>Liu, Jianxiong</au><au>Zhong, Nanshan</au><au>Zhang, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen</atitle><jtitle>Biomedicine &amp; pharmacotherapy</jtitle><addtitle>Biomed Pharmacother</addtitle><date>2021-10</date><risdate>2021</risdate><volume>142</volume><spage>112047</spage><epage>112047</epage><pages>112047-112047</pages><artnum>112047</artnum><issn>0753-3322</issn><eissn>1950-6007</eissn><abstract>Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine’s safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG’s therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the “recombinant” plus “drug-resistant” BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB. [Display omitted] •The RdrBCG-I overexpressing Ag85B + Rv2628 is stable both in vitro and in vivo.•The RdrBCG-I was safe and nonvirulent even to SCID mice.•The RdrBCG-I enhanced the activity of a second-line regimen in a murine model.•The RdrBCG facilitated lung tissue recovery.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>34426260</pmid><doi>10.1016/j.biopha.2021.112047</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0753-3322
ispartof Biomedicine & pharmacotherapy, 2021-10, Vol.142, p.112047-112047, Article 112047
issn 0753-3322
1950-6007
language eng
recordid cdi_proquest_miscellaneous_2564132151
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Ag85B
Amikacin - pharmacology
Amikacin - therapeutic use
Animals
Antigens, Bacterial - biosynthesis
Antigens, Bacterial - genetics
Antigens, Bacterial - immunology
Antitubercular Agents - pharmacology
Antitubercular Agents - therapeutic use
BCG Vaccine - biosynthesis
BCG Vaccine - genetics
BCG Vaccine - immunology
BCG Vaccine - therapeutic use
Disease Models, Animal
Drug Resistance, Bacterial - genetics
Drug-resistant tuberculosis
Levofloxacin - pharmacology
Levofloxacin - therapeutic use
Mice
Mice, Inbred BALB C
Mice, SCID
Mycobacterium bovis - chemistry
Mycobacterium bovis - drug effects
Mycobacterium bovis - genetics
Mycobacterium tuberculosis - drug effects
Mycobacterium tuberculosis - pathogenicity
Plasmids
Prothionamide - pharmacology
Prothionamide - therapeutic use
Pyrazinamide - pharmacology
Pyrazinamide - therapeutic use
Recombinant drug-resistant BCG
Rv2628
Therapeutic vaccine
Tuberculosis, Pulmonary - drug therapy
Tuberculosis, Pulmonary - pathology
Tuberculosis, Pulmonary - prevention & control
Vaccines, Synthetic - biosynthesis
Vaccines, Synthetic - genetics
Vaccines, Synthetic - immunology
Vaccines, Synthetic - therapeutic use
Virulence
title A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recombinant%20selective%20drug-resistant%20M.%20bovis%20BCG%20enhances%20the%20bactericidal%20activity%20of%20a%20second-line%20anti-tuberculosis%20regimen&rft.jtitle=Biomedicine%20&%20pharmacotherapy&rft.au=Chiwala,%20Gift&rft.date=2021-10&rft.volume=142&rft.spage=112047&rft.epage=112047&rft.pages=112047-112047&rft.artnum=112047&rft.issn=0753-3322&rft.eissn=1950-6007&rft_id=info:doi/10.1016/j.biopha.2021.112047&rft_dat=%3Cproquest_cross%3E2564132151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564132151&rft_id=info:pmid/34426260&rft_els_id=S0753332221008301&rfr_iscdi=true