Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery
To discover new catalysts using density functional theory (DFT) calculations, binding energies of reaction intermediates are considered as descriptors to predict catalytic activities. Recently, machine learning methods have been developed to reduce the number of computationally intensive DFT calcula...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2021-09, Vol.61 (9), p.4514-4520 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4520 |
---|---|
container_issue | 9 |
container_start_page | 4514 |
container_title | Journal of chemical information and modeling |
container_volume | 61 |
creator | Mok, Dong Hyeon Back, Seoin |
description | To discover new catalysts using density functional theory (DFT) calculations, binding energies of reaction intermediates are considered as descriptors to predict catalytic activities. Recently, machine learning methods have been developed to reduce the number of computationally intensive DFT calculations for a high-throughput screening. These methods require several steps such as bulk structure optimization, surface structure modeling, and active site identification, which could be time-consuming as the number of new candidate materials increases. To bypass these processes, in this work, we report an atomic structure-free representation of active motifs to predict binding energies. We identify binding site atoms and their nearest neighboring atoms positioned in the same layer and the sublayer, and their atomic properties are collected to construct fingerprints. Our method enabled a quicker training (200–400 s using CPU) compared to the previous deep-learning models and predicted CO and H binding energies with mean absolute errors (MAEs) of 0.120 and 0.105 eV, respectively. Our method is also capable of creating all possible active motifs without any DFT calculations and predicting their binding energies using the trained model. The predicted binding energy distributions can suggest promising candidates to accelerate catalyst discovery. |
doi_str_mv | 10.1021/acs.jcim.1c00726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2563704249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563704249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-d49cb3c3a4959aad3e623e569a77576809c95fe73be361eec1d3e82965d0669d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwEvHuxMmjRdjmNuKkwEf-GtZOkrZLRNTdLh_nszt10ET-_B-3wfXz4IXVIyoiSlt0r70UqbZkQ1IXkqjtCAZlwmUpDP48OeSXGKzrxfEcKYFOkAfUyCbYzGr8H1OvQOkrkDwC_QOfDQBhWMbbGt8EQHswb8ZIOpPK6sw7PvDkoToMRTFVS98QHfGa_tGtzmHJ1UqvZwsZ9D9D6fvU0fksXz_eN0skgU4zQkJZd6yTRTPFZTqmQgUgaZkCrPs1yMidQyqyBnS2CCAmgakXEqRVYSIWTJhuh697dz9qsHH4omVoC6Vi3Y3hdpJlhOeMplRK_-oCvbuza2i1QuOeW5IJEiO0o7672DquicaZTbFJQUW9FFFF1sRRd70TFys4v8Xg4__8V_ADfrgYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579414760</pqid></control><display><type>article</type><title>Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery</title><source>ACS Publications</source><creator>Mok, Dong Hyeon ; Back, Seoin</creator><creatorcontrib>Mok, Dong Hyeon ; Back, Seoin</creatorcontrib><description>To discover new catalysts using density functional theory (DFT) calculations, binding energies of reaction intermediates are considered as descriptors to predict catalytic activities. Recently, machine learning methods have been developed to reduce the number of computationally intensive DFT calculations for a high-throughput screening. These methods require several steps such as bulk structure optimization, surface structure modeling, and active site identification, which could be time-consuming as the number of new candidate materials increases. To bypass these processes, in this work, we report an atomic structure-free representation of active motifs to predict binding energies. We identify binding site atoms and their nearest neighboring atoms positioned in the same layer and the sublayer, and their atomic properties are collected to construct fingerprints. Our method enabled a quicker training (200–400 s using CPU) compared to the previous deep-learning models and predicted CO and H binding energies with mean absolute errors (MAEs) of 0.120 and 0.105 eV, respectively. Our method is also capable of creating all possible active motifs without any DFT calculations and predicting their binding energies using the trained model. The predicted binding energy distributions can suggest promising candidates to accelerate catalyst discovery.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.1c00726</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Atomic properties ; Atomic structure ; Binding energy ; Binding sites ; Catalysts ; Computational Chemistry ; Deep learning ; Density functional theory ; Machine learning ; Materials selection ; Optimization ; Representations ; Surface structure</subject><ispartof>Journal of chemical information and modeling, 2021-09, Vol.61 (9), p.4514-4520</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 27, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-d49cb3c3a4959aad3e623e569a77576809c95fe73be361eec1d3e82965d0669d3</citedby><cites>FETCH-LOGICAL-a341t-d49cb3c3a4959aad3e623e569a77576809c95fe73be361eec1d3e82965d0669d3</cites><orcidid>0000-0001-5319-7052 ; 0000-0003-4682-0621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.1c00726$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.1c00726$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Mok, Dong Hyeon</creatorcontrib><creatorcontrib>Back, Seoin</creatorcontrib><title>Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>To discover new catalysts using density functional theory (DFT) calculations, binding energies of reaction intermediates are considered as descriptors to predict catalytic activities. Recently, machine learning methods have been developed to reduce the number of computationally intensive DFT calculations for a high-throughput screening. These methods require several steps such as bulk structure optimization, surface structure modeling, and active site identification, which could be time-consuming as the number of new candidate materials increases. To bypass these processes, in this work, we report an atomic structure-free representation of active motifs to predict binding energies. We identify binding site atoms and their nearest neighboring atoms positioned in the same layer and the sublayer, and their atomic properties are collected to construct fingerprints. Our method enabled a quicker training (200–400 s using CPU) compared to the previous deep-learning models and predicted CO and H binding energies with mean absolute errors (MAEs) of 0.120 and 0.105 eV, respectively. Our method is also capable of creating all possible active motifs without any DFT calculations and predicting their binding energies using the trained model. The predicted binding energy distributions can suggest promising candidates to accelerate catalyst discovery.</description><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>Binding energy</subject><subject>Binding sites</subject><subject>Catalysts</subject><subject>Computational Chemistry</subject><subject>Deep learning</subject><subject>Density functional theory</subject><subject>Machine learning</subject><subject>Materials selection</subject><subject>Optimization</subject><subject>Representations</subject><subject>Surface structure</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwEvHuxMmjRdjmNuKkwEf-GtZOkrZLRNTdLh_nszt10ET-_B-3wfXz4IXVIyoiSlt0r70UqbZkQ1IXkqjtCAZlwmUpDP48OeSXGKzrxfEcKYFOkAfUyCbYzGr8H1OvQOkrkDwC_QOfDQBhWMbbGt8EQHswb8ZIOpPK6sw7PvDkoToMRTFVS98QHfGa_tGtzmHJ1UqvZwsZ9D9D6fvU0fksXz_eN0skgU4zQkJZd6yTRTPFZTqmQgUgaZkCrPs1yMidQyqyBnS2CCAmgakXEqRVYSIWTJhuh697dz9qsHH4omVoC6Vi3Y3hdpJlhOeMplRK_-oCvbuza2i1QuOeW5IJEiO0o7672DquicaZTbFJQUW9FFFF1sRRd70TFys4v8Xg4__8V_ADfrgYk</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>Mok, Dong Hyeon</creator><creator>Back, Seoin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5319-7052</orcidid><orcidid>https://orcid.org/0000-0003-4682-0621</orcidid></search><sort><creationdate>20210927</creationdate><title>Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery</title><author>Mok, Dong Hyeon ; Back, Seoin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-d49cb3c3a4959aad3e623e569a77576809c95fe73be361eec1d3e82965d0669d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>Binding energy</topic><topic>Binding sites</topic><topic>Catalysts</topic><topic>Computational Chemistry</topic><topic>Deep learning</topic><topic>Density functional theory</topic><topic>Machine learning</topic><topic>Materials selection</topic><topic>Optimization</topic><topic>Representations</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mok, Dong Hyeon</creatorcontrib><creatorcontrib>Back, Seoin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mok, Dong Hyeon</au><au>Back, Seoin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-09-27</date><risdate>2021</risdate><volume>61</volume><issue>9</issue><spage>4514</spage><epage>4520</epage><pages>4514-4520</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>To discover new catalysts using density functional theory (DFT) calculations, binding energies of reaction intermediates are considered as descriptors to predict catalytic activities. Recently, machine learning methods have been developed to reduce the number of computationally intensive DFT calculations for a high-throughput screening. These methods require several steps such as bulk structure optimization, surface structure modeling, and active site identification, which could be time-consuming as the number of new candidate materials increases. To bypass these processes, in this work, we report an atomic structure-free representation of active motifs to predict binding energies. We identify binding site atoms and their nearest neighboring atoms positioned in the same layer and the sublayer, and their atomic properties are collected to construct fingerprints. Our method enabled a quicker training (200–400 s using CPU) compared to the previous deep-learning models and predicted CO and H binding energies with mean absolute errors (MAEs) of 0.120 and 0.105 eV, respectively. Our method is also capable of creating all possible active motifs without any DFT calculations and predicting their binding energies using the trained model. The predicted binding energy distributions can suggest promising candidates to accelerate catalyst discovery.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.1c00726</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5319-7052</orcidid><orcidid>https://orcid.org/0000-0003-4682-0621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2021-09, Vol.61 (9), p.4514-4520 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2563704249 |
source | ACS Publications |
subjects | Atomic properties Atomic structure Binding energy Binding sites Catalysts Computational Chemistry Deep learning Density functional theory Machine learning Materials selection Optimization Representations Surface structure |
title | Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Structure-Free%20Representation%20of%20Active%20Motifs%20for%20Expedited%20Catalyst%20Discovery&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Mok,%20Dong%20Hyeon&rft.date=2021-09-27&rft.volume=61&rft.issue=9&rft.spage=4514&rft.epage=4520&rft.pages=4514-4520&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.1c00726&rft_dat=%3Cproquest_cross%3E2563704249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579414760&rft_id=info:pmid/&rfr_iscdi=true |