Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion
Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice- pv. interaction. Therefore, we identified 3,517 circRNAs from...
Gespeichert in:
Veröffentlicht in: | Phytopathology 2022-03, Vol.112 (3), p.492-500 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 3 |
container_start_page | 492 |
container_title | Phytopathology |
container_volume | 112 |
creator | Wang, Peihong Wang, Sai Wu, Yan Nie, Wenhan Yiming, Ayizekeranmu Huang, Jin Ahmad, Iftikhar Zhu, Bo Chen, Gongyou |
description | Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice-
pv.
interaction. Therefore, we identified 3,517 circRNAs from rice leaves infected with the highly virulent
.
pv.
strain PXO99
by using rRNA depleted RNA sequencing technique coupled with the CIRI2 and CIRCexplorer2 pipeline. Characterization analyses showed that these circRNAs were distributed across the whole genome of rice, and most circRNAs arose from exons (85.13%), ranged from 200 to 1,000 bp, and were with a noncanonical GT/AG (including CT/AC equivalent) splicing signal. Functional annotation and enrichment analysis of the host genes that produced the differentially expressed circRNAs (DEcircRNAs) suggested that these identified circRNAs might play an important role in reprogramming rice responses to PXO99
invasion, mainly by mediating photorespiration and chloroplast, peroxisome, and diterpenoid biosynthesis. Moreover, 31 DEcircRNAs were predicted to act as microRNA decoys in rice. The expression profile of four DEcircRNAs were validated by quantitative real-time PCR with divergent primers, and the back-splicing sites of seven DEcircRNAs were verified by PCR analysis and Sanger sequencing. Collectively, these results inferred a potential functional role of circRNAs in the regulation of rice immunity and provide novel clues about the molecular mechanisms of rice-PXO99
interaction. |
doi_str_mv | 10.1094/PHYTO-06-21-0235-R |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2563696374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563696374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-994b8c0e0b85052ad2c133ae84c62bebc968def65bdf30d09fa394b62c6554633</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMotj7-gAvJ0k3qnbw6WUrxUSgqg0JdhUwmYyNtUpOpoL_e1rau7uFyvrP4ELooYFCA4tfPD28vTwQkoQUBygSpDlC_UJyRoSz5IeoDsIIorqY9dJLzBwAMSyGPUY9xToEJ2Udh3LjQ-dZb0_kYsAkNHs1MMrZzyf9sn7HFlbcOj3yyq7lJuHq8ybhyeRlD48M77iKemtDN4iIGk3FM3z_G4eXXYB_H4cvk9dQZOmrNPLvz3T1Fr3e3L6MHMnm6H49uJsQyYB1RitelBQd1KUBQ01BbMGZcya2ktautkmXjWinqpmXQgGoNWyOSWikEl4ydoqvt7jLFz5XLnV74bN18boKLq6ypkEwqyYZ8XaXbqk0x5-RavUx-YdK3LkBvPOs_zxqkpoXeeNbVGrrc7a_qhWv-kb1Y9gsQrnsi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563696374</pqid></control><display><type>article</type><title>Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>American Phytopathological Society Journal Back Issues</source><creator>Wang, Peihong ; Wang, Sai ; Wu, Yan ; Nie, Wenhan ; Yiming, Ayizekeranmu ; Huang, Jin ; Ahmad, Iftikhar ; Zhu, Bo ; Chen, Gongyou</creator><creatorcontrib>Wang, Peihong ; Wang, Sai ; Wu, Yan ; Nie, Wenhan ; Yiming, Ayizekeranmu ; Huang, Jin ; Ahmad, Iftikhar ; Zhu, Bo ; Chen, Gongyou</creatorcontrib><description>Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice-
pv.
interaction. Therefore, we identified 3,517 circRNAs from rice leaves infected with the highly virulent
.
pv.
strain PXO99
by using rRNA depleted RNA sequencing technique coupled with the CIRI2 and CIRCexplorer2 pipeline. Characterization analyses showed that these circRNAs were distributed across the whole genome of rice, and most circRNAs arose from exons (85.13%), ranged from 200 to 1,000 bp, and were with a noncanonical GT/AG (including CT/AC equivalent) splicing signal. Functional annotation and enrichment analysis of the host genes that produced the differentially expressed circRNAs (DEcircRNAs) suggested that these identified circRNAs might play an important role in reprogramming rice responses to PXO99
invasion, mainly by mediating photorespiration and chloroplast, peroxisome, and diterpenoid biosynthesis. Moreover, 31 DEcircRNAs were predicted to act as microRNA decoys in rice. The expression profile of four DEcircRNAs were validated by quantitative real-time PCR with divergent primers, and the back-splicing sites of seven DEcircRNAs were verified by PCR analysis and Sanger sequencing. Collectively, these results inferred a potential functional role of circRNAs in the regulation of rice immunity and provide novel clues about the molecular mechanisms of rice-PXO99
interaction.</description><identifier>ISSN: 0031-949X</identifier><identifier>EISSN: 1943-7684</identifier><identifier>DOI: 10.1094/PHYTO-06-21-0235-R</identifier><identifier>PMID: 34420356</identifier><language>eng</language><publisher>United States</publisher><subject>Bacterial Proteins - genetics ; Oryza - genetics ; Plant Diseases - genetics ; RNA, Circular - genetics ; Xanthomonas</subject><ispartof>Phytopathology, 2022-03, Vol.112 (3), p.492-500</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-994b8c0e0b85052ad2c133ae84c62bebc968def65bdf30d09fa394b62c6554633</citedby><cites>FETCH-LOGICAL-c303t-994b8c0e0b85052ad2c133ae84c62bebc968def65bdf30d09fa394b62c6554633</cites><orcidid>0000-0003-1979-2880 ; 0000-0001-8811-1247 ; 0000-0002-5740-2663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3711,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34420356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Peihong</creatorcontrib><creatorcontrib>Wang, Sai</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Nie, Wenhan</creatorcontrib><creatorcontrib>Yiming, Ayizekeranmu</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Gongyou</creatorcontrib><title>Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion</title><title>Phytopathology</title><addtitle>Phytopathology</addtitle><description>Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice-
pv.
interaction. Therefore, we identified 3,517 circRNAs from rice leaves infected with the highly virulent
.
pv.
strain PXO99
by using rRNA depleted RNA sequencing technique coupled with the CIRI2 and CIRCexplorer2 pipeline. Characterization analyses showed that these circRNAs were distributed across the whole genome of rice, and most circRNAs arose from exons (85.13%), ranged from 200 to 1,000 bp, and were with a noncanonical GT/AG (including CT/AC equivalent) splicing signal. Functional annotation and enrichment analysis of the host genes that produced the differentially expressed circRNAs (DEcircRNAs) suggested that these identified circRNAs might play an important role in reprogramming rice responses to PXO99
invasion, mainly by mediating photorespiration and chloroplast, peroxisome, and diterpenoid biosynthesis. Moreover, 31 DEcircRNAs were predicted to act as microRNA decoys in rice. The expression profile of four DEcircRNAs were validated by quantitative real-time PCR with divergent primers, and the back-splicing sites of seven DEcircRNAs were verified by PCR analysis and Sanger sequencing. Collectively, these results inferred a potential functional role of circRNAs in the regulation of rice immunity and provide novel clues about the molecular mechanisms of rice-PXO99
interaction.</description><subject>Bacterial Proteins - genetics</subject><subject>Oryza - genetics</subject><subject>Plant Diseases - genetics</subject><subject>RNA, Circular - genetics</subject><subject>Xanthomonas</subject><issn>0031-949X</issn><issn>1943-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLAzEUhYMotj7-gAvJ0k3qnbw6WUrxUSgqg0JdhUwmYyNtUpOpoL_e1rau7uFyvrP4ELooYFCA4tfPD28vTwQkoQUBygSpDlC_UJyRoSz5IeoDsIIorqY9dJLzBwAMSyGPUY9xToEJ2Udh3LjQ-dZb0_kYsAkNHs1MMrZzyf9sn7HFlbcOj3yyq7lJuHq8ybhyeRlD48M77iKemtDN4iIGk3FM3z_G4eXXYB_H4cvk9dQZOmrNPLvz3T1Fr3e3L6MHMnm6H49uJsQyYB1RitelBQd1KUBQ01BbMGZcya2ktautkmXjWinqpmXQgGoNWyOSWikEl4ydoqvt7jLFz5XLnV74bN18boKLq6ypkEwqyYZ8XaXbqk0x5-RavUx-YdK3LkBvPOs_zxqkpoXeeNbVGrrc7a_qhWv-kb1Y9gsQrnsi</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Wang, Peihong</creator><creator>Wang, Sai</creator><creator>Wu, Yan</creator><creator>Nie, Wenhan</creator><creator>Yiming, Ayizekeranmu</creator><creator>Huang, Jin</creator><creator>Ahmad, Iftikhar</creator><creator>Zhu, Bo</creator><creator>Chen, Gongyou</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1979-2880</orcidid><orcidid>https://orcid.org/0000-0001-8811-1247</orcidid><orcidid>https://orcid.org/0000-0002-5740-2663</orcidid></search><sort><creationdate>202203</creationdate><title>Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion</title><author>Wang, Peihong ; Wang, Sai ; Wu, Yan ; Nie, Wenhan ; Yiming, Ayizekeranmu ; Huang, Jin ; Ahmad, Iftikhar ; Zhu, Bo ; Chen, Gongyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-994b8c0e0b85052ad2c133ae84c62bebc968def65bdf30d09fa394b62c6554633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Oryza - genetics</topic><topic>Plant Diseases - genetics</topic><topic>RNA, Circular - genetics</topic><topic>Xanthomonas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peihong</creatorcontrib><creatorcontrib>Wang, Sai</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Nie, Wenhan</creatorcontrib><creatorcontrib>Yiming, Ayizekeranmu</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Chen, Gongyou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peihong</au><au>Wang, Sai</au><au>Wu, Yan</au><au>Nie, Wenhan</au><au>Yiming, Ayizekeranmu</au><au>Huang, Jin</au><au>Ahmad, Iftikhar</au><au>Zhu, Bo</au><au>Chen, Gongyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion</atitle><jtitle>Phytopathology</jtitle><addtitle>Phytopathology</addtitle><date>2022-03</date><risdate>2022</risdate><volume>112</volume><issue>3</issue><spage>492</spage><epage>500</epage><pages>492-500</pages><issn>0031-949X</issn><eissn>1943-7684</eissn><abstract>Emerging roles of circular RNAs (circRNAs) in various biological processes have advanced our knowledge of transcriptional and posttranscriptional gene regulation. To date, no research has been conducted to explore their roles in the rice-
pv.
interaction. Therefore, we identified 3,517 circRNAs from rice leaves infected with the highly virulent
.
pv.
strain PXO99
by using rRNA depleted RNA sequencing technique coupled with the CIRI2 and CIRCexplorer2 pipeline. Characterization analyses showed that these circRNAs were distributed across the whole genome of rice, and most circRNAs arose from exons (85.13%), ranged from 200 to 1,000 bp, and were with a noncanonical GT/AG (including CT/AC equivalent) splicing signal. Functional annotation and enrichment analysis of the host genes that produced the differentially expressed circRNAs (DEcircRNAs) suggested that these identified circRNAs might play an important role in reprogramming rice responses to PXO99
invasion, mainly by mediating photorespiration and chloroplast, peroxisome, and diterpenoid biosynthesis. Moreover, 31 DEcircRNAs were predicted to act as microRNA decoys in rice. The expression profile of four DEcircRNAs were validated by quantitative real-time PCR with divergent primers, and the back-splicing sites of seven DEcircRNAs were verified by PCR analysis and Sanger sequencing. Collectively, these results inferred a potential functional role of circRNAs in the regulation of rice immunity and provide novel clues about the molecular mechanisms of rice-PXO99
interaction.</abstract><cop>United States</cop><pmid>34420356</pmid><doi>10.1094/PHYTO-06-21-0235-R</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1979-2880</orcidid><orcidid>https://orcid.org/0000-0001-8811-1247</orcidid><orcidid>https://orcid.org/0000-0002-5740-2663</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-949X |
ispartof | Phytopathology, 2022-03, Vol.112 (3), p.492-500 |
issn | 0031-949X 1943-7684 |
language | eng |
recordid | cdi_proquest_miscellaneous_2563696374 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; American Phytopathological Society Journal Back Issues |
subjects | Bacterial Proteins - genetics Oryza - genetics Plant Diseases - genetics RNA, Circular - genetics Xanthomonas |
title | Identification and Characterization of Rice Circular RNAs Responding to Xanthomonas oryzae pv. oryzae Invasion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Characterization%20of%20Rice%20Circular%20RNAs%20Responding%20to%20Xanthomonas%20oryzae%20pv.%20oryzae%20Invasion&rft.jtitle=Phytopathology&rft.au=Wang,%20Peihong&rft.date=2022-03&rft.volume=112&rft.issue=3&rft.spage=492&rft.epage=500&rft.pages=492-500&rft.issn=0031-949X&rft.eissn=1943-7684&rft_id=info:doi/10.1094/PHYTO-06-21-0235-R&rft_dat=%3Cproquest_cross%3E2563696374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563696374&rft_id=info:pmid/34420356&rfr_iscdi=true |