Details of colliding thunderstorm outflows as observed by Doppler lidar
Three cases of colliding outflow boundaries are examined using data collected from the NOAA Doppler lidar and a meteorological tower during the summer of 1986 near Boulder, Colorado. The data are unique because the lidar and the 300 m tower were colocated, providing measurements of both kinematic an...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 1990-05, Vol.47 (9), p.1081-1098 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three cases of colliding outflow boundaries are examined using data collected from the NOAA Doppler lidar and a meteorological tower during the summer of 1986 near Boulder, Colorado. The data are unique because the lidar and the 300 m tower were colocated, providing measurements of both kinematic and thermodynamic properties. Lidar data reveal small-scale vortex roll instabilities within the leading edge of the outflow. Observations of the post-collision interactions showed that the warmer of the two outflows was deflected upward by the colder outflow to heights of 2 km. In all cases, this forced mechanical lifting was sufficient to produce convection. A simple model of two colliding density currents also suggests that deeper outflows are more efficient in initiating convection. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/1520-0469(1990)047<1081:doctoa>2.0.co;2 |