Automated segmentation and tracking of mitochondria in live-cell time-lapse images

Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2021-09, Vol.18 (9), p.1091-1102
Hauptverfasser: Lefebvre, Austin E. Y. T., Ma, Dennis, Kessenbrock, Kai, Lawson, Devon A., Digman, Michelle A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 9
container_start_page 1091
container_title Nature methods
container_volume 18
creator Lefebvre, Austin E. Y. T.
Ma, Dennis
Kessenbrock, Kai
Lawson, Devon A.
Digman, Michelle A.
description Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function. Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.
doi_str_mv 10.1038/s41592-021-01234-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2563428131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A675425602</galeid><sourcerecordid>A675425602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</originalsourceid><addsrcrecordid>eNp9kVtrFTEUhYMotlb_gA8S8MWXqUl2kpl5PBRvUBBK-xwyuYypM8lxkinYX2_G01oUKYEkJN9a7L0XQq8pOaUEuveZU9GzhjDaEMqAN7dP0DEVvGtaSsTT-zvp6RF6kfM1IQCciefoCDinIBgco4vdWtKsi7M4u3F2segSUsQ6WlwWbb6HOOLk8RxKMt9StEvQOEQ8hRvXGDdNuITZNZPeZ4fDrEeXX6JnXk_Zvbo7T9DVxw-XZ5-b86-fvpztzhvDOSsNSNn1lpG-9VTqurfeGpBtZ6EzcqAajGnNAC1w0g5aMyOs9yCA2n4YwMMJenfw3S_px-pyUXPIW0k6urRmxYSs7XYUaEXf_oNep3WJtbpKtayaSskeqFFPToXo0zaBzVTtZCvq6CTZqNP_UHVZNweTovOhvv8lYAeBWVLOi_Nqv9RJLT8VJWoLUh2CVDVI9TtIdVtFb-4qXofZ2T-S--QqAAcg1684uuWhpUdsfwFzX6ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572353662</pqid></control><display><type>article</type><title>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Lefebvre, Austin E. Y. T. ; Ma, Dennis ; Kessenbrock, Kai ; Lawson, Devon A. ; Digman, Michelle A.</creator><creatorcontrib>Lefebvre, Austin E. Y. T. ; Ma, Dennis ; Kessenbrock, Kai ; Lawson, Devon A. ; Digman, Michelle A.</creatorcontrib><description>Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function. Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-021-01234-z</identifier><identifier>PMID: 34413523</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/245/2225 ; 631/1647/328 ; 631/1647/794 ; 631/80/2373 ; 631/80/642 ; Algorithms ; Applications software ; Automation ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Breast cancer ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell interaction ; Cell research ; Cells, Cultured ; Cytology ; Female ; Fission ; Fluorescence microscopy ; Humans ; Image processing ; Image segmentation ; Imaging, Three-Dimensional - methods ; Life Sciences ; Mammary Glands, Human - cytology ; Mechanical properties ; Methods ; Mitochondria ; Mitochondria - metabolism ; Molecular dynamics ; Morphology ; NAD - metabolism ; Physiological aspects ; Proteomics ; Reproducibility of Results ; Software ; Time-Lapse Imaging - methods ; Tracking ; Triple Negative Breast Neoplasms - pathology</subject><ispartof>Nature methods, 2021-09, Vol.18 (9), p.1091-1102</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2022</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</citedby><cites>FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</cites><orcidid>0000-0003-1692-0517 ; 0000-0003-4611-7100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-021-01234-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-021-01234-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34413523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>Ma, Dennis</creatorcontrib><creatorcontrib>Kessenbrock, Kai</creatorcontrib><creatorcontrib>Lawson, Devon A.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><title>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function. Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.</description><subject>631/1647/245/2225</subject><subject>631/1647/328</subject><subject>631/1647/794</subject><subject>631/80/2373</subject><subject>631/80/642</subject><subject>Algorithms</subject><subject>Applications software</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell interaction</subject><subject>Cell research</subject><subject>Cells, Cultured</subject><subject>Cytology</subject><subject>Female</subject><subject>Fission</subject><subject>Fluorescence microscopy</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Life Sciences</subject><subject>Mammary Glands, Human - cytology</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>NAD - metabolism</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Time-Lapse Imaging - methods</subject><subject>Tracking</subject><subject>Triple Negative Breast Neoplasms - pathology</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVtrFTEUhYMotlb_gA8S8MWXqUl2kpl5PBRvUBBK-xwyuYypM8lxkinYX2_G01oUKYEkJN9a7L0XQq8pOaUEuveZU9GzhjDaEMqAN7dP0DEVvGtaSsTT-zvp6RF6kfM1IQCciefoCDinIBgco4vdWtKsi7M4u3F2segSUsQ6WlwWbb6HOOLk8RxKMt9StEvQOEQ8hRvXGDdNuITZNZPeZ4fDrEeXX6JnXk_Zvbo7T9DVxw-XZ5-b86-fvpztzhvDOSsNSNn1lpG-9VTqurfeGpBtZ6EzcqAajGnNAC1w0g5aMyOs9yCA2n4YwMMJenfw3S_px-pyUXPIW0k6urRmxYSs7XYUaEXf_oNep3WJtbpKtayaSskeqFFPToXo0zaBzVTtZCvq6CTZqNP_UHVZNweTovOhvv8lYAeBWVLOi_Nqv9RJLT8VJWoLUh2CVDVI9TtIdVtFb-4qXofZ2T-S--QqAAcg1684uuWhpUdsfwFzX6ds</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lefebvre, Austin E. Y. T.</creator><creator>Ma, Dennis</creator><creator>Kessenbrock, Kai</creator><creator>Lawson, Devon A.</creator><creator>Digman, Michelle A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1692-0517</orcidid><orcidid>https://orcid.org/0000-0003-4611-7100</orcidid></search><sort><creationdate>20210901</creationdate><title>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</title><author>Lefebvre, Austin E. Y. T. ; Ma, Dennis ; Kessenbrock, Kai ; Lawson, Devon A. ; Digman, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/245/2225</topic><topic>631/1647/328</topic><topic>631/1647/794</topic><topic>631/80/2373</topic><topic>631/80/642</topic><topic>Algorithms</topic><topic>Applications software</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell interaction</topic><topic>Cell research</topic><topic>Cells, Cultured</topic><topic>Cytology</topic><topic>Female</topic><topic>Fission</topic><topic>Fluorescence microscopy</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Life Sciences</topic><topic>Mammary Glands, Human - cytology</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>NAD - metabolism</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Time-Lapse Imaging - methods</topic><topic>Tracking</topic><topic>Triple Negative Breast Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>Ma, Dennis</creatorcontrib><creatorcontrib>Kessenbrock, Kai</creatorcontrib><creatorcontrib>Lawson, Devon A.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefebvre, Austin E. Y. T.</au><au>Ma, Dennis</au><au>Kessenbrock, Kai</au><au>Lawson, Devon A.</au><au>Digman, Michelle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>9</issue><spage>1091</spage><epage>1102</epage><pages>1091-1102</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function. Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34413523</pmid><doi>10.1038/s41592-021-01234-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1692-0517</orcidid><orcidid>https://orcid.org/0000-0003-4611-7100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2021-09, Vol.18 (9), p.1091-1102
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_2563428131
source MEDLINE; Nature; SpringerNature Journals
subjects 631/1647/245/2225
631/1647/328
631/1647/794
631/80/2373
631/80/642
Algorithms
Applications software
Automation
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Breast cancer
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell interaction
Cell research
Cells, Cultured
Cytology
Female
Fission
Fluorescence microscopy
Humans
Image processing
Image segmentation
Imaging, Three-Dimensional - methods
Life Sciences
Mammary Glands, Human - cytology
Mechanical properties
Methods
Mitochondria
Mitochondria - metabolism
Molecular dynamics
Morphology
NAD - metabolism
Physiological aspects
Proteomics
Reproducibility of Results
Software
Time-Lapse Imaging - methods
Tracking
Triple Negative Breast Neoplasms - pathology
title Automated segmentation and tracking of mitochondria in live-cell time-lapse images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20segmentation%20and%20tracking%20of%20mitochondria%20in%20live-cell%20time-lapse%20images&rft.jtitle=Nature%20methods&rft.au=Lefebvre,%20Austin%20E.%20Y.%20T.&rft.date=2021-09-01&rft.volume=18&rft.issue=9&rft.spage=1091&rft.epage=1102&rft.pages=1091-1102&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-021-01234-z&rft_dat=%3Cgale_proqu%3EA675425602%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572353662&rft_id=info:pmid/34413523&rft_galeid=A675425602&rfr_iscdi=true