Automated segmentation and tracking of mitochondria in live-cell time-lapse images
Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional tim...
Gespeichert in:
Veröffentlicht in: | Nature methods 2021-09, Vol.18 (9), p.1091-1102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1102 |
---|---|
container_issue | 9 |
container_start_page | 1091 |
container_title | Nature methods |
container_volume | 18 |
creator | Lefebvre, Austin E. Y. T. Ma, Dennis Kessenbrock, Kai Lawson, Devon A. Digman, Michelle A. |
description | Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.
Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events. |
doi_str_mv | 10.1038/s41592-021-01234-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2563428131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A675425602</galeid><sourcerecordid>A675425602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</originalsourceid><addsrcrecordid>eNp9kVtrFTEUhYMotlb_gA8S8MWXqUl2kpl5PBRvUBBK-xwyuYypM8lxkinYX2_G01oUKYEkJN9a7L0XQq8pOaUEuveZU9GzhjDaEMqAN7dP0DEVvGtaSsTT-zvp6RF6kfM1IQCciefoCDinIBgco4vdWtKsi7M4u3F2segSUsQ6WlwWbb6HOOLk8RxKMt9StEvQOEQ8hRvXGDdNuITZNZPeZ4fDrEeXX6JnXk_Zvbo7T9DVxw-XZ5-b86-fvpztzhvDOSsNSNn1lpG-9VTqurfeGpBtZ6EzcqAajGnNAC1w0g5aMyOs9yCA2n4YwMMJenfw3S_px-pyUXPIW0k6urRmxYSs7XYUaEXf_oNep3WJtbpKtayaSskeqFFPToXo0zaBzVTtZCvq6CTZqNP_UHVZNweTovOhvv8lYAeBWVLOi_Nqv9RJLT8VJWoLUh2CVDVI9TtIdVtFb-4qXofZ2T-S--QqAAcg1684uuWhpUdsfwFzX6ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572353662</pqid></control><display><type>article</type><title>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Lefebvre, Austin E. Y. T. ; Ma, Dennis ; Kessenbrock, Kai ; Lawson, Devon A. ; Digman, Michelle A.</creator><creatorcontrib>Lefebvre, Austin E. Y. T. ; Ma, Dennis ; Kessenbrock, Kai ; Lawson, Devon A. ; Digman, Michelle A.</creatorcontrib><description>Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.
Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-021-01234-z</identifier><identifier>PMID: 34413523</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/245/2225 ; 631/1647/328 ; 631/1647/794 ; 631/80/2373 ; 631/80/642 ; Algorithms ; Applications software ; Automation ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Breast cancer ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cell interaction ; Cell research ; Cells, Cultured ; Cytology ; Female ; Fission ; Fluorescence microscopy ; Humans ; Image processing ; Image segmentation ; Imaging, Three-Dimensional - methods ; Life Sciences ; Mammary Glands, Human - cytology ; Mechanical properties ; Methods ; Mitochondria ; Mitochondria - metabolism ; Molecular dynamics ; Morphology ; NAD - metabolism ; Physiological aspects ; Proteomics ; Reproducibility of Results ; Software ; Time-Lapse Imaging - methods ; Tracking ; Triple Negative Breast Neoplasms - pathology</subject><ispartof>Nature methods, 2021-09, Vol.18 (9), p.1091-1102</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2022</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</citedby><cites>FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</cites><orcidid>0000-0003-1692-0517 ; 0000-0003-4611-7100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-021-01234-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-021-01234-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34413523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>Ma, Dennis</creatorcontrib><creatorcontrib>Kessenbrock, Kai</creatorcontrib><creatorcontrib>Lawson, Devon A.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><title>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.
Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.</description><subject>631/1647/245/2225</subject><subject>631/1647/328</subject><subject>631/1647/794</subject><subject>631/80/2373</subject><subject>631/80/642</subject><subject>Algorithms</subject><subject>Applications software</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell interaction</subject><subject>Cell research</subject><subject>Cells, Cultured</subject><subject>Cytology</subject><subject>Female</subject><subject>Fission</subject><subject>Fluorescence microscopy</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Life Sciences</subject><subject>Mammary Glands, Human - cytology</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Molecular dynamics</subject><subject>Morphology</subject><subject>NAD - metabolism</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Time-Lapse Imaging - methods</subject><subject>Tracking</subject><subject>Triple Negative Breast Neoplasms - pathology</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVtrFTEUhYMotlb_gA8S8MWXqUl2kpl5PBRvUBBK-xwyuYypM8lxkinYX2_G01oUKYEkJN9a7L0XQq8pOaUEuveZU9GzhjDaEMqAN7dP0DEVvGtaSsTT-zvp6RF6kfM1IQCciefoCDinIBgco4vdWtKsi7M4u3F2segSUsQ6WlwWbb6HOOLk8RxKMt9StEvQOEQ8hRvXGDdNuITZNZPeZ4fDrEeXX6JnXk_Zvbo7T9DVxw-XZ5-b86-fvpztzhvDOSsNSNn1lpG-9VTqurfeGpBtZ6EzcqAajGnNAC1w0g5aMyOs9yCA2n4YwMMJenfw3S_px-pyUXPIW0k6urRmxYSs7XYUaEXf_oNep3WJtbpKtayaSskeqFFPToXo0zaBzVTtZCvq6CTZqNP_UHVZNweTovOhvv8lYAeBWVLOi_Nqv9RJLT8VJWoLUh2CVDVI9TtIdVtFb-4qXofZ2T-S--QqAAcg1684uuWhpUdsfwFzX6ds</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lefebvre, Austin E. Y. T.</creator><creator>Ma, Dennis</creator><creator>Kessenbrock, Kai</creator><creator>Lawson, Devon A.</creator><creator>Digman, Michelle A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1692-0517</orcidid><orcidid>https://orcid.org/0000-0003-4611-7100</orcidid></search><sort><creationdate>20210901</creationdate><title>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</title><author>Lefebvre, Austin E. Y. T. ; Ma, Dennis ; Kessenbrock, Kai ; Lawson, Devon A. ; Digman, Michelle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-36689d2097f16a97f7fdc3678d38c6b1a3cc7cb373407baa2c5dff3531d9bb3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/245/2225</topic><topic>631/1647/328</topic><topic>631/1647/794</topic><topic>631/80/2373</topic><topic>631/80/642</topic><topic>Algorithms</topic><topic>Applications software</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell interaction</topic><topic>Cell research</topic><topic>Cells, Cultured</topic><topic>Cytology</topic><topic>Female</topic><topic>Fission</topic><topic>Fluorescence microscopy</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Life Sciences</topic><topic>Mammary Glands, Human - cytology</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Molecular dynamics</topic><topic>Morphology</topic><topic>NAD - metabolism</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Time-Lapse Imaging - methods</topic><topic>Tracking</topic><topic>Triple Negative Breast Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefebvre, Austin E. Y. T.</creatorcontrib><creatorcontrib>Ma, Dennis</creatorcontrib><creatorcontrib>Kessenbrock, Kai</creatorcontrib><creatorcontrib>Lawson, Devon A.</creatorcontrib><creatorcontrib>Digman, Michelle A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefebvre, Austin E. Y. T.</au><au>Ma, Dennis</au><au>Kessenbrock, Kai</au><au>Lawson, Devon A.</au><au>Digman, Michelle A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated segmentation and tracking of mitochondria in live-cell time-lapse images</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>9</issue><spage>1091</spage><epage>1102</epage><pages>1091-1102</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.
Mitometer enables efficient, rapid, and accurate automated segmentation and tracking of mitochondria from time-lapse images. Mitometer performs well on diverse input images and can be used to monitor dynamic fission and fusion events.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34413523</pmid><doi>10.1038/s41592-021-01234-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1692-0517</orcidid><orcidid>https://orcid.org/0000-0003-4611-7100</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2021-09, Vol.18 (9), p.1091-1102 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_2563428131 |
source | MEDLINE; Nature; SpringerNature Journals |
subjects | 631/1647/245/2225 631/1647/328 631/1647/794 631/80/2373 631/80/642 Algorithms Applications software Automation Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Breast cancer Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell interaction Cell research Cells, Cultured Cytology Female Fission Fluorescence microscopy Humans Image processing Image segmentation Imaging, Three-Dimensional - methods Life Sciences Mammary Glands, Human - cytology Mechanical properties Methods Mitochondria Mitochondria - metabolism Molecular dynamics Morphology NAD - metabolism Physiological aspects Proteomics Reproducibility of Results Software Time-Lapse Imaging - methods Tracking Triple Negative Breast Neoplasms - pathology |
title | Automated segmentation and tracking of mitochondria in live-cell time-lapse images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20segmentation%20and%20tracking%20of%20mitochondria%20in%20live-cell%20time-lapse%20images&rft.jtitle=Nature%20methods&rft.au=Lefebvre,%20Austin%20E.%20Y.%20T.&rft.date=2021-09-01&rft.volume=18&rft.issue=9&rft.spage=1091&rft.epage=1102&rft.pages=1091-1102&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-021-01234-z&rft_dat=%3Cgale_proqu%3EA675425602%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572353662&rft_id=info:pmid/34413523&rft_galeid=A675425602&rfr_iscdi=true |