Quantum neuron with real weights
This paper proposes a new model of a real weights quantum neuron exploiting the so-called quantum parallelism which allows for an exponential speedup of computations. The quantum neurons were trained in a classical–quantum approach, considering the delta rule to update the values of the weights in a...
Gespeichert in:
Veröffentlicht in: | Neural networks 2021-11, Vol.143, p.698-708 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | |
container_start_page | 698 |
container_title | Neural networks |
container_volume | 143 |
creator | Monteiro, Cláudio A. Filho, Gustavo I.S. Costa, Matheus Hopper J. de Paula Neto, Fernando M. de Oliveira, Wilson R. |
description | This paper proposes a new model of a real weights quantum neuron exploiting the so-called quantum parallelism which allows for an exponential speedup of computations. The quantum neurons were trained in a classical–quantum approach, considering the delta rule to update the values of the weights in an image database of three distinct patterns. We performed classical simulations and also executed experiments in an actual small-scale quantum processor. The results of the experiments show that the proposed quantum real neuron model has a good generalisation capacity, demonstrating better accuracy than the traditional binary quantum perceptron model. |
doi_str_mv | 10.1016/j.neunet.2021.07.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2563427954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608021003051</els_id><sourcerecordid>2563427954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-12264836852d310f6dfb126861c79c2538ac7ad025053a0eac3bd5f64148ad523</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gYsu3bR--W26EWTwDwZE0HXIpF-dlE47JqmDb2-HunZ1N_ceuIeQawoFBapu26LHscdUMGC0gLIALk7Iguqyylmp2SlZgK54rkDDObmIsQUApQVfkOxttH0ad9lECEOfHXzaZgFtlx3Qf25TvCRnje0iXv3lknw8PryvnvP169PL6n6dO86rlFPGlNBcaclqTqFRdbOhTGlFXVk5Jrm2rrQ1MAmSW0Dr-KaWjRJUaFtLxpfkZubuw_A1Ykxm56PDrrM9DmM0TCouWFlJMVXFXHVhiDFgY_bB72z4MRTMUYhpzSzEHIUYKM0kZJrdzTOcbnx7DCY6j73D2gd0ydSD_x_wCxbCaVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563427954</pqid></control><display><type>article</type><title>Quantum neuron with real weights</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Monteiro, Cláudio A. ; Filho, Gustavo I.S. ; Costa, Matheus Hopper J. ; de Paula Neto, Fernando M. ; de Oliveira, Wilson R.</creator><creatorcontrib>Monteiro, Cláudio A. ; Filho, Gustavo I.S. ; Costa, Matheus Hopper J. ; de Paula Neto, Fernando M. ; de Oliveira, Wilson R.</creatorcontrib><description>This paper proposes a new model of a real weights quantum neuron exploiting the so-called quantum parallelism which allows for an exponential speedup of computations. The quantum neurons were trained in a classical–quantum approach, considering the delta rule to update the values of the weights in an image database of three distinct patterns. We performed classical simulations and also executed experiments in an actual small-scale quantum processor. The results of the experiments show that the proposed quantum real neuron model has a good generalisation capacity, demonstrating better accuracy than the traditional binary quantum perceptron model.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2021.07.034</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial intelligence ; Machine learning ; Quantum artificial neurons ; Quantum computing ; Quantum machine learning</subject><ispartof>Neural networks, 2021-11, Vol.143, p.698-708</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-12264836852d310f6dfb126861c79c2538ac7ad025053a0eac3bd5f64148ad523</citedby><cites>FETCH-LOGICAL-c339t-12264836852d310f6dfb126861c79c2538ac7ad025053a0eac3bd5f64148ad523</cites><orcidid>0000-0002-7986-2695 ; 0000-0002-3261-8265 ; 0000-0003-4264-1124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2021.07.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Monteiro, Cláudio A.</creatorcontrib><creatorcontrib>Filho, Gustavo I.S.</creatorcontrib><creatorcontrib>Costa, Matheus Hopper J.</creatorcontrib><creatorcontrib>de Paula Neto, Fernando M.</creatorcontrib><creatorcontrib>de Oliveira, Wilson R.</creatorcontrib><title>Quantum neuron with real weights</title><title>Neural networks</title><description>This paper proposes a new model of a real weights quantum neuron exploiting the so-called quantum parallelism which allows for an exponential speedup of computations. The quantum neurons were trained in a classical–quantum approach, considering the delta rule to update the values of the weights in an image database of three distinct patterns. We performed classical simulations and also executed experiments in an actual small-scale quantum processor. The results of the experiments show that the proposed quantum real neuron model has a good generalisation capacity, demonstrating better accuracy than the traditional binary quantum perceptron model.</description><subject>Artificial intelligence</subject><subject>Machine learning</subject><subject>Quantum artificial neurons</subject><subject>Quantum computing</subject><subject>Quantum machine learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAYRYMoOI6-gYsu3bR--W26EWTwDwZE0HXIpF-dlE47JqmDb2-HunZ1N_ceuIeQawoFBapu26LHscdUMGC0gLIALk7Iguqyylmp2SlZgK54rkDDObmIsQUApQVfkOxttH0ad9lECEOfHXzaZgFtlx3Qf25TvCRnje0iXv3lknw8PryvnvP169PL6n6dO86rlFPGlNBcaclqTqFRdbOhTGlFXVk5Jrm2rrQ1MAmSW0Dr-KaWjRJUaFtLxpfkZubuw_A1Ykxm56PDrrM9DmM0TCouWFlJMVXFXHVhiDFgY_bB72z4MRTMUYhpzSzEHIUYKM0kZJrdzTOcbnx7DCY6j73D2gd0ydSD_x_wCxbCaVI</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Monteiro, Cláudio A.</creator><creator>Filho, Gustavo I.S.</creator><creator>Costa, Matheus Hopper J.</creator><creator>de Paula Neto, Fernando M.</creator><creator>de Oliveira, Wilson R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7986-2695</orcidid><orcidid>https://orcid.org/0000-0002-3261-8265</orcidid><orcidid>https://orcid.org/0000-0003-4264-1124</orcidid></search><sort><creationdate>202111</creationdate><title>Quantum neuron with real weights</title><author>Monteiro, Cláudio A. ; Filho, Gustavo I.S. ; Costa, Matheus Hopper J. ; de Paula Neto, Fernando M. ; de Oliveira, Wilson R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-12264836852d310f6dfb126861c79c2538ac7ad025053a0eac3bd5f64148ad523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Machine learning</topic><topic>Quantum artificial neurons</topic><topic>Quantum computing</topic><topic>Quantum machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monteiro, Cláudio A.</creatorcontrib><creatorcontrib>Filho, Gustavo I.S.</creatorcontrib><creatorcontrib>Costa, Matheus Hopper J.</creatorcontrib><creatorcontrib>de Paula Neto, Fernando M.</creatorcontrib><creatorcontrib>de Oliveira, Wilson R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monteiro, Cláudio A.</au><au>Filho, Gustavo I.S.</au><au>Costa, Matheus Hopper J.</au><au>de Paula Neto, Fernando M.</au><au>de Oliveira, Wilson R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum neuron with real weights</atitle><jtitle>Neural networks</jtitle><date>2021-11</date><risdate>2021</risdate><volume>143</volume><spage>698</spage><epage>708</epage><pages>698-708</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper proposes a new model of a real weights quantum neuron exploiting the so-called quantum parallelism which allows for an exponential speedup of computations. The quantum neurons were trained in a classical–quantum approach, considering the delta rule to update the values of the weights in an image database of three distinct patterns. We performed classical simulations and also executed experiments in an actual small-scale quantum processor. The results of the experiments show that the proposed quantum real neuron model has a good generalisation capacity, demonstrating better accuracy than the traditional binary quantum perceptron model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.neunet.2021.07.034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7986-2695</orcidid><orcidid>https://orcid.org/0000-0002-3261-8265</orcidid><orcidid>https://orcid.org/0000-0003-4264-1124</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2021-11, Vol.143, p.698-708 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2563427954 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Artificial intelligence Machine learning Quantum artificial neurons Quantum computing Quantum machine learning |
title | Quantum neuron with real weights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20neuron%20with%20real%20weights&rft.jtitle=Neural%20networks&rft.au=Monteiro,%20Cl%C3%A1udio%20A.&rft.date=2021-11&rft.volume=143&rft.spage=698&rft.epage=708&rft.pages=698-708&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2021.07.034&rft_dat=%3Cproquest_cross%3E2563427954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563427954&rft_id=info:pmid/&rft_els_id=S0893608021003051&rfr_iscdi=true |