Building population models for large-scale neural recordings: Opportunities and pitfalls

Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here, we provide a broad overview of recent developments in this area. We compare and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in neurobiology 2021-10, Vol.70, p.64-73
Hauptverfasser: Hurwitz, Cole, Kudryashova, Nina, Onken, Arno, Hennig, Matthias H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 64
container_title Current opinion in neurobiology
container_volume 70
creator Hurwitz, Cole
Kudryashova, Nina
Onken, Arno
Hennig, Matthias H.
description Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here, we provide a broad overview of recent developments in this area. We compare and contrast different approaches, highlight strengths and limitations, and discuss biological and mechanistic insights that these methods provide.
doi_str_mv 10.1016/j.conb.2021.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2563427721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959438821000726</els_id><sourcerecordid>2563427721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-2e19c04a5a59f3f39de59a637f61dfb6ea1e30e4d48702883ba15db807a92dd43</originalsourceid><addsrcrecordid>eNp9kLFu2zAURYkiReO4_YEOBccsUh5JSaSCLInRtAEMeGmBbgRFPhk0aFEhpQL9-8hwmjHTXc49wyHkK4OSAWtuDqWNQ1dy4KwEWQKID2TFlBRFoxS_ICto67aohFKX5CrnAwA0QolP5FJUFWMtyBX58zD74Pywp2Mc52AmHwd6jA5Dpn1MNJi0xyJbE5AOOCcTaEIb0-mSb-luHGOa5sFPHjM1g6Ojn3oTQv5MPi6b8cvrrsnvx--_Nj-L7e7H0-Z-W1hRN1PBkbUWKlObuu1FL1qHdWsaIfuGub5r0DAUgJWrlASulOgMq12nQJqWO1eJNbk-e8cUn2fMkz76bDEEM2Ccs-Z1IyouJWcLys-oTTHnhL0ekz-a9E8z0Kei-qBPRfWpqAapl6LL6durf-6O6N4u_xMuwN0ZWJLhX49JZ-txsOj8UmrSLvr3_C-e_oiG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563427721</pqid></control><display><type>article</type><title>Building population models for large-scale neural recordings: Opportunities and pitfalls</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Hurwitz, Cole ; Kudryashova, Nina ; Onken, Arno ; Hennig, Matthias H.</creator><creatorcontrib>Hurwitz, Cole ; Kudryashova, Nina ; Onken, Arno ; Hennig, Matthias H.</creatorcontrib><description>Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here, we provide a broad overview of recent developments in this area. We compare and contrast different approaches, highlight strengths and limitations, and discuss biological and mechanistic insights that these methods provide.</description><identifier>ISSN: 0959-4388</identifier><identifier>EISSN: 1873-6882</identifier><identifier>DOI: 10.1016/j.conb.2021.07.003</identifier><identifier>PMID: 34411907</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Neurons - physiology</subject><ispartof>Current opinion in neurobiology, 2021-10, Vol.70, p.64-73</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-2e19c04a5a59f3f39de59a637f61dfb6ea1e30e4d48702883ba15db807a92dd43</citedby><cites>FETCH-LOGICAL-c356t-2e19c04a5a59f3f39de59a637f61dfb6ea1e30e4d48702883ba15db807a92dd43</cites><orcidid>0000-0001-7387-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.conb.2021.07.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34411907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurwitz, Cole</creatorcontrib><creatorcontrib>Kudryashova, Nina</creatorcontrib><creatorcontrib>Onken, Arno</creatorcontrib><creatorcontrib>Hennig, Matthias H.</creatorcontrib><title>Building population models for large-scale neural recordings: Opportunities and pitfalls</title><title>Current opinion in neurobiology</title><addtitle>Curr Opin Neurobiol</addtitle><description>Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here, we provide a broad overview of recent developments in this area. We compare and contrast different approaches, highlight strengths and limitations, and discuss biological and mechanistic insights that these methods provide.</description><subject>Neurons - physiology</subject><issn>0959-4388</issn><issn>1873-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLFu2zAURYkiReO4_YEOBccsUh5JSaSCLInRtAEMeGmBbgRFPhk0aFEhpQL9-8hwmjHTXc49wyHkK4OSAWtuDqWNQ1dy4KwEWQKID2TFlBRFoxS_ICto67aohFKX5CrnAwA0QolP5FJUFWMtyBX58zD74Pywp2Mc52AmHwd6jA5Dpn1MNJi0xyJbE5AOOCcTaEIb0-mSb-luHGOa5sFPHjM1g6Ojn3oTQv5MPi6b8cvrrsnvx--_Nj-L7e7H0-Z-W1hRN1PBkbUWKlObuu1FL1qHdWsaIfuGub5r0DAUgJWrlASulOgMq12nQJqWO1eJNbk-e8cUn2fMkz76bDEEM2Ccs-Z1IyouJWcLys-oTTHnhL0ekz-a9E8z0Kei-qBPRfWpqAapl6LL6durf-6O6N4u_xMuwN0ZWJLhX49JZ-txsOj8UmrSLvr3_C-e_oiG</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Hurwitz, Cole</creator><creator>Kudryashova, Nina</creator><creator>Onken, Arno</creator><creator>Hennig, Matthias H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7387-5535</orcidid></search><sort><creationdate>202110</creationdate><title>Building population models for large-scale neural recordings: Opportunities and pitfalls</title><author>Hurwitz, Cole ; Kudryashova, Nina ; Onken, Arno ; Hennig, Matthias H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-2e19c04a5a59f3f39de59a637f61dfb6ea1e30e4d48702883ba15db807a92dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Neurons - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, Cole</creatorcontrib><creatorcontrib>Kudryashova, Nina</creatorcontrib><creatorcontrib>Onken, Arno</creatorcontrib><creatorcontrib>Hennig, Matthias H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurwitz, Cole</au><au>Kudryashova, Nina</au><au>Onken, Arno</au><au>Hennig, Matthias H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building population models for large-scale neural recordings: Opportunities and pitfalls</atitle><jtitle>Current opinion in neurobiology</jtitle><addtitle>Curr Opin Neurobiol</addtitle><date>2021-10</date><risdate>2021</risdate><volume>70</volume><spage>64</spage><epage>73</epage><pages>64-73</pages><issn>0959-4388</issn><eissn>1873-6882</eissn><abstract>Modern recording technologies now enable simultaneous recording from large numbers of neurons. This has driven the development of new statistical models for analyzing and interpreting neural population activity. Here, we provide a broad overview of recent developments in this area. We compare and contrast different approaches, highlight strengths and limitations, and discuss biological and mechanistic insights that these methods provide.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34411907</pmid><doi>10.1016/j.conb.2021.07.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7387-5535</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-4388
ispartof Current opinion in neurobiology, 2021-10, Vol.70, p.64-73
issn 0959-4388
1873-6882
language eng
recordid cdi_proquest_miscellaneous_2563427721
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Neurons - physiology
title Building population models for large-scale neural recordings: Opportunities and pitfalls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20population%20models%20for%20large-scale%20neural%20recordings:%20Opportunities%20and%20pitfalls&rft.jtitle=Current%20opinion%20in%20neurobiology&rft.au=Hurwitz,%20Cole&rft.date=2021-10&rft.volume=70&rft.spage=64&rft.epage=73&rft.pages=64-73&rft.issn=0959-4388&rft.eissn=1873-6882&rft_id=info:doi/10.1016/j.conb.2021.07.003&rft_dat=%3Cproquest_cross%3E2563427721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563427721&rft_id=info:pmid/34411907&rft_els_id=S0959438821000726&rfr_iscdi=true