Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy

Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-09, Vol.21 (17), p.7332-7338
Hauptverfasser: Zhang, Yichao, Flannigan, David J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7338
container_issue 17
container_start_page 7332
container_title Nano letters
container_volume 21
creator Zhang, Yichao
Flannigan, David J
description Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual steps poses a particularly significant challenge owing to demanding spatiotemporal resolution requirements. Here, we achieve such resolutions with femtosecond 4D ultrafast electron microscopy and directly image nanometer-variant softening of photoexcited phonons at individual surface steps. We find large degrees of softening precisely at the step position, with a thickness-dependent, strain-induced frequency modulation extending tens of nanometers laterally from the atomic-scale discontinuity. The effect originates from anisotropic bond dilation and photoinduced incoherent atomic displacements delineated by abrupt molecular-layer cessation. The magnitude and spatiotemporal extent of softening is quantitatively described with a finite-element transient-deformation model. The high spatiotemporal resolutions demonstrated here enable uncovering of new insights into atomic-scale structure–function relationships of highly defect-sensitive, functional materials.
doi_str_mv 10.1021/acs.nanolett.1c02524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2562518138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562518138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-86f2d57328fad7ba512030b9e9841033a0d41ffac71b74bc2c5ed903bdf823b63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwByy8ZJPiR5zHEpUClcpDKl1bjmO3qRI72I5Q_x5HLSxZzUhzz8ydC8AtRjOMCL4X0s-MMLZVIcywRISR9AxMMKMoycqSnP_1RXoJrrzfI4RKytAEiGUnto3ZwrfIdyooBz921lgD11YHZcaRCHDuDj6IFq4Hp4VUcB1U7-F3E3YwfYSbNjihhQ9w0SoZXKRfG-msl7Y_XIMLLVqvbk51CjZPi8_5S7J6f17OH1aJoISFpMg0qVlOSaFFnVeCYYIoqkoVPWNEqUB1inU8nuMqTytJJFN1iWhV64LQKqNTcHfc2zv7NSgfeNd4qdpWGGUHzwnLCMMFpkWUpkfp6NE7pXnvmk64A8eIj4nymCj_TZSfEo0YOmLjdG8HZ-I__yM_3wd-qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562518138</pqid></control><display><type>article</type><title>Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy</title><source>ACS Publications</source><creator>Zhang, Yichao ; Flannigan, David J</creator><creatorcontrib>Zhang, Yichao ; Flannigan, David J</creatorcontrib><description>Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual steps poses a particularly significant challenge owing to demanding spatiotemporal resolution requirements. Here, we achieve such resolutions with femtosecond 4D ultrafast electron microscopy and directly image nanometer-variant softening of photoexcited phonons at individual surface steps. We find large degrees of softening precisely at the step position, with a thickness-dependent, strain-induced frequency modulation extending tens of nanometers laterally from the atomic-scale discontinuity. The effect originates from anisotropic bond dilation and photoinduced incoherent atomic displacements delineated by abrupt molecular-layer cessation. The magnitude and spatiotemporal extent of softening is quantitatively described with a finite-element transient-deformation model. The high spatiotemporal resolutions demonstrated here enable uncovering of new insights into atomic-scale structure–function relationships of highly defect-sensitive, functional materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.1c02524</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2021-09, Vol.21 (17), p.7332-7338</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-86f2d57328fad7ba512030b9e9841033a0d41ffac71b74bc2c5ed903bdf823b63</citedby><cites>FETCH-LOGICAL-a325t-86f2d57328fad7ba512030b9e9841033a0d41ffac71b74bc2c5ed903bdf823b63</cites><orcidid>0000-0002-1829-1868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.1c02524$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02524$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Zhang, Yichao</creatorcontrib><creatorcontrib>Flannigan, David J</creatorcontrib><title>Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual steps poses a particularly significant challenge owing to demanding spatiotemporal resolution requirements. Here, we achieve such resolutions with femtosecond 4D ultrafast electron microscopy and directly image nanometer-variant softening of photoexcited phonons at individual surface steps. We find large degrees of softening precisely at the step position, with a thickness-dependent, strain-induced frequency modulation extending tens of nanometers laterally from the atomic-scale discontinuity. The effect originates from anisotropic bond dilation and photoinduced incoherent atomic displacements delineated by abrupt molecular-layer cessation. The magnitude and spatiotemporal extent of softening is quantitatively described with a finite-element transient-deformation model. The high spatiotemporal resolutions demonstrated here enable uncovering of new insights into atomic-scale structure–function relationships of highly defect-sensitive, functional materials.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwByy8ZJPiR5zHEpUClcpDKl1bjmO3qRI72I5Q_x5HLSxZzUhzz8ydC8AtRjOMCL4X0s-MMLZVIcywRISR9AxMMKMoycqSnP_1RXoJrrzfI4RKytAEiGUnto3ZwrfIdyooBz921lgD11YHZcaRCHDuDj6IFq4Hp4VUcB1U7-F3E3YwfYSbNjihhQ9w0SoZXKRfG-msl7Y_XIMLLVqvbk51CjZPi8_5S7J6f17OH1aJoISFpMg0qVlOSaFFnVeCYYIoqkoVPWNEqUB1inU8nuMqTytJJFN1iWhV64LQKqNTcHfc2zv7NSgfeNd4qdpWGGUHzwnLCMMFpkWUpkfp6NE7pXnvmk64A8eIj4nymCj_TZSfEo0YOmLjdG8HZ-I__yM_3wd-qg</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Zhang, Yichao</creator><creator>Flannigan, David J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1829-1868</orcidid></search><sort><creationdate>20210908</creationdate><title>Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy</title><author>Zhang, Yichao ; Flannigan, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-86f2d57328fad7ba512030b9e9841033a0d41ffac71b74bc2c5ed903bdf823b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yichao</creatorcontrib><creatorcontrib>Flannigan, David J</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yichao</au><au>Flannigan, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-09-08</date><risdate>2021</risdate><volume>21</volume><issue>17</issue><spage>7332</spage><epage>7338</epage><pages>7332-7338</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual steps poses a particularly significant challenge owing to demanding spatiotemporal resolution requirements. Here, we achieve such resolutions with femtosecond 4D ultrafast electron microscopy and directly image nanometer-variant softening of photoexcited phonons at individual surface steps. We find large degrees of softening precisely at the step position, with a thickness-dependent, strain-induced frequency modulation extending tens of nanometers laterally from the atomic-scale discontinuity. The effect originates from anisotropic bond dilation and photoinduced incoherent atomic displacements delineated by abrupt molecular-layer cessation. The magnitude and spatiotemporal extent of softening is quantitatively described with a finite-element transient-deformation model. The high spatiotemporal resolutions demonstrated here enable uncovering of new insights into atomic-scale structure–function relationships of highly defect-sensitive, functional materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.1c02524</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1829-1868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-09, Vol.21 (17), p.7332-7338
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2562518138
source ACS Publications
title Imaging Nanometer Phonon Softening at Crystal Surface Steps with 4D Ultrafast Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Nanometer%20Phonon%20Softening%20at%20Crystal%20Surface%20Steps%20with%204D%20Ultrafast%20Electron%20Microscopy&rft.jtitle=Nano%20letters&rft.au=Zhang,%20Yichao&rft.date=2021-09-08&rft.volume=21&rft.issue=17&rft.spage=7332&rft.epage=7338&rft.pages=7332-7338&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.1c02524&rft_dat=%3Cproquest_cross%3E2562518138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562518138&rft_id=info:pmid/&rfr_iscdi=true