Biocatalytic synthesis of 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α‐glucosidase from Oryza sativa

Background 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. Enzymatic synthesis is a preferred method for AA‐2G production o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology journal 2021-11, Vol.16 (11), p.e2100199-n/a
Hauptverfasser: Qi, Xuelian, Shao, Junlan, Cheng, Yinchu, He, Xiaoying, Li, Yan, Jia, Honghua, Yan, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e2100199
container_title Biotechnology journal
container_volume 16
creator Qi, Xuelian
Shao, Junlan
Cheng, Yinchu
He, Xiaoying
Li, Yan
Jia, Honghua
Yan, Ming
description Background 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. Enzymatic synthesis is a preferred method for AA‐2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α‐Glucosidase, an enzyme classed into O‐glycoside hydrolases, might be used in glycosylation reactions to synthesize AA‐2G. Main Methods and Major Results Here, an α‐glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA‐2G with few intermediates and byproducts. The extracellular recombinant α‐glucosidase (rAGL) reached 9.11 U mL–1 after fed‐batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg–1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0–7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L–1 of AA‐2G was synthesized by rAGL. Conclusions and Implications The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA‐2G. These studies lay the basis for the industrial application of α‐glucosidase. Graphical and Lay Summary 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important industrial derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. In this study, the authors characterized an α‐glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA‐2G production via transglycosylation of L‐AA was investigated. These studies lay the basis for the industrial application of recombinant α‐glucosidase.
doi_str_mv 10.1002/biot.202100199
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561923146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561923146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3459-69b673344e92091afdd95eb6de41e3740e25db5522c2560192cce5b0e7619cc23</originalsourceid><addsrcrecordid>eNqFUc1O3DAYtKqiAtteOVY-9pKt_-LgI1AKK620FzhHjvMFXGXjxV9SGk48An0UXoSH4EnqZRd65DD291kzI2uGkAPOppwx8b3yoZ8KJtLCjflA9vihZlkhufq4nXWhD3fJPuIvxlQumfpEdqWSRmhm9sjfYx-c7W079t5RHLv-GtAjDQ0Vz_cPi4Snx3T8SLhqBxdWY7RdwLFND_MEiy7EKmmt8zUd0HdX1HYU_vTROmjbobUxbasIiFDTF7MXI_S1RaBNDEu6iOOdpWh7_9t-JjuNbRG-bO8Jufx5enFyns0XZ7OTo3nmpMpNpk2lCymVAiOY4bapa5NDpWtQHGShGIi8rvJcCCdyncIRzkFeMSg0N84JOSHfNr6rGG4GwL5celz_2HYQBiyTKolSkDpRpxuqiwExQlOuol_aOJaclesaynUN5VsNSfB16z1US6jf6K-5J4LZEG59C-M7duXxbHHx3_wf60efWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561923146</pqid></control><display><type>article</type><title>Biocatalytic synthesis of 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α‐glucosidase from Oryza sativa</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Qi, Xuelian ; Shao, Junlan ; Cheng, Yinchu ; He, Xiaoying ; Li, Yan ; Jia, Honghua ; Yan, Ming</creator><creatorcontrib>Qi, Xuelian ; Shao, Junlan ; Cheng, Yinchu ; He, Xiaoying ; Li, Yan ; Jia, Honghua ; Yan, Ming</creatorcontrib><description>Background 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. Enzymatic synthesis is a preferred method for AA‐2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α‐Glucosidase, an enzyme classed into O‐glycoside hydrolases, might be used in glycosylation reactions to synthesize AA‐2G. Main Methods and Major Results Here, an α‐glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA‐2G with few intermediates and byproducts. The extracellular recombinant α‐glucosidase (rAGL) reached 9.11 U mL–1 after fed‐batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg–1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0–7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L–1 of AA‐2G was synthesized by rAGL. Conclusions and Implications The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA‐2G. These studies lay the basis for the industrial application of α‐glucosidase. Graphical and Lay Summary 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important industrial derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. In this study, the authors characterized an α‐glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA‐2G production via transglycosylation of L‐AA was investigated. These studies lay the basis for the industrial application of recombinant α‐glucosidase.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.202100199</identifier><identifier>PMID: 34392609</identifier><language>eng</language><publisher>Germany</publisher><subject>2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid α‐glucosidase ; alpha-Glucosidases - genetics ; Ascorbic Acid - analogs &amp; derivatives ; Oryza - genetics ; Oryza sativa ; Pichia pastoris ; Saccharomycetales ; transglycosylation</subject><ispartof>Biotechnology journal, 2021-11, Vol.16 (11), p.e2100199-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3459-69b673344e92091afdd95eb6de41e3740e25db5522c2560192cce5b0e7619cc23</citedby><cites>FETCH-LOGICAL-c3459-69b673344e92091afdd95eb6de41e3740e25db5522c2560192cce5b0e7619cc23</cites><orcidid>0000-0003-4100-9442 ; 0000-0002-5574-2314 ; 0000-0002-3824-7768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.202100199$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.202100199$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34392609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Xuelian</creatorcontrib><creatorcontrib>Shao, Junlan</creatorcontrib><creatorcontrib>Cheng, Yinchu</creatorcontrib><creatorcontrib>He, Xiaoying</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Jia, Honghua</creatorcontrib><creatorcontrib>Yan, Ming</creatorcontrib><title>Biocatalytic synthesis of 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α‐glucosidase from Oryza sativa</title><title>Biotechnology journal</title><addtitle>Biotechnol J</addtitle><description>Background 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. Enzymatic synthesis is a preferred method for AA‐2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α‐Glucosidase, an enzyme classed into O‐glycoside hydrolases, might be used in glycosylation reactions to synthesize AA‐2G. Main Methods and Major Results Here, an α‐glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA‐2G with few intermediates and byproducts. The extracellular recombinant α‐glucosidase (rAGL) reached 9.11 U mL–1 after fed‐batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg–1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0–7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L–1 of AA‐2G was synthesized by rAGL. Conclusions and Implications The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA‐2G. These studies lay the basis for the industrial application of α‐glucosidase. Graphical and Lay Summary 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important industrial derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. In this study, the authors characterized an α‐glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA‐2G production via transglycosylation of L‐AA was investigated. These studies lay the basis for the industrial application of recombinant α‐glucosidase.</description><subject>2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid α‐glucosidase</subject><subject>alpha-Glucosidases - genetics</subject><subject>Ascorbic Acid - analogs &amp; derivatives</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Pichia pastoris</subject><subject>Saccharomycetales</subject><subject>transglycosylation</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUc1O3DAYtKqiAtteOVY-9pKt_-LgI1AKK620FzhHjvMFXGXjxV9SGk48An0UXoSH4EnqZRd65DD291kzI2uGkAPOppwx8b3yoZ8KJtLCjflA9vihZlkhufq4nXWhD3fJPuIvxlQumfpEdqWSRmhm9sjfYx-c7W079t5RHLv-GtAjDQ0Vz_cPi4Snx3T8SLhqBxdWY7RdwLFND_MEiy7EKmmt8zUd0HdX1HYU_vTROmjbobUxbasIiFDTF7MXI_S1RaBNDEu6iOOdpWh7_9t-JjuNbRG-bO8Jufx5enFyns0XZ7OTo3nmpMpNpk2lCymVAiOY4bapa5NDpWtQHGShGIi8rvJcCCdyncIRzkFeMSg0N84JOSHfNr6rGG4GwL5celz_2HYQBiyTKolSkDpRpxuqiwExQlOuol_aOJaclesaynUN5VsNSfB16z1US6jf6K-5J4LZEG59C-M7duXxbHHx3_wf60efWg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Qi, Xuelian</creator><creator>Shao, Junlan</creator><creator>Cheng, Yinchu</creator><creator>He, Xiaoying</creator><creator>Li, Yan</creator><creator>Jia, Honghua</creator><creator>Yan, Ming</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4100-9442</orcidid><orcidid>https://orcid.org/0000-0002-5574-2314</orcidid><orcidid>https://orcid.org/0000-0002-3824-7768</orcidid></search><sort><creationdate>202111</creationdate><title>Biocatalytic synthesis of 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α‐glucosidase from Oryza sativa</title><author>Qi, Xuelian ; Shao, Junlan ; Cheng, Yinchu ; He, Xiaoying ; Li, Yan ; Jia, Honghua ; Yan, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3459-69b673344e92091afdd95eb6de41e3740e25db5522c2560192cce5b0e7619cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid α‐glucosidase</topic><topic>alpha-Glucosidases - genetics</topic><topic>Ascorbic Acid - analogs &amp; derivatives</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Pichia pastoris</topic><topic>Saccharomycetales</topic><topic>transglycosylation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xuelian</creatorcontrib><creatorcontrib>Shao, Junlan</creatorcontrib><creatorcontrib>Cheng, Yinchu</creatorcontrib><creatorcontrib>He, Xiaoying</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Jia, Honghua</creatorcontrib><creatorcontrib>Yan, Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xuelian</au><au>Shao, Junlan</au><au>Cheng, Yinchu</au><au>He, Xiaoying</au><au>Li, Yan</au><au>Jia, Honghua</au><au>Yan, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocatalytic synthesis of 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α‐glucosidase from Oryza sativa</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnol J</addtitle><date>2021-11</date><risdate>2021</risdate><volume>16</volume><issue>11</issue><spage>e2100199</spage><epage>n/a</epage><pages>e2100199-n/a</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Background 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. Enzymatic synthesis is a preferred method for AA‐2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α‐Glucosidase, an enzyme classed into O‐glycoside hydrolases, might be used in glycosylation reactions to synthesize AA‐2G. Main Methods and Major Results Here, an α‐glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA‐2G with few intermediates and byproducts. The extracellular recombinant α‐glucosidase (rAGL) reached 9.11 U mL–1 after fed‐batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg–1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0–7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L–1 of AA‐2G was synthesized by rAGL. Conclusions and Implications The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA‐2G. These studies lay the basis for the industrial application of α‐glucosidase. Graphical and Lay Summary 2‐O‐α‐D‐Glucopyranosyl‐L‐ascorbic acid (AA‐2G) is an important industrial derivative of L‐ascorbic acid (L‐AA), which has the distinct advantages of non‐reducibility, antioxidation, and reproducible decomposition into L‐AA and glucose. In this study, the authors characterized an α‐glucosidase from Oryza sativa, which was recombinantly produced in Pichia pastoris GS115, and its potential for AA‐2G production via transglycosylation of L‐AA was investigated. These studies lay the basis for the industrial application of recombinant α‐glucosidase.</abstract><cop>Germany</cop><pmid>34392609</pmid><doi>10.1002/biot.202100199</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4100-9442</orcidid><orcidid>https://orcid.org/0000-0002-5574-2314</orcidid><orcidid>https://orcid.org/0000-0002-3824-7768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1860-6768
ispartof Biotechnology journal, 2021-11, Vol.16 (11), p.e2100199-n/a
issn 1860-6768
1860-7314
language eng
recordid cdi_proquest_miscellaneous_2561923146
source MEDLINE; Wiley Online Library All Journals
subjects 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid α‐glucosidase
alpha-Glucosidases - genetics
Ascorbic Acid - analogs & derivatives
Oryza - genetics
Oryza sativa
Pichia pastoris
Saccharomycetales
transglycosylation
title Biocatalytic synthesis of 2‐O‐α‐D‐glucopyranosyl‐L‐ascorbic acid using an extracellular expressed α‐glucosidase from Oryza sativa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocatalytic%20synthesis%20of%202%E2%80%90O%E2%80%90%CE%B1%E2%80%90D%E2%80%90glucopyranosyl%E2%80%90L%E2%80%90ascorbic%20acid%20using%20an%20extracellular%20expressed%20%CE%B1%E2%80%90glucosidase%20from%20Oryza%20sativa&rft.jtitle=Biotechnology%20journal&rft.au=Qi,%20Xuelian&rft.date=2021-11&rft.volume=16&rft.issue=11&rft.spage=e2100199&rft.epage=n/a&rft.pages=e2100199-n/a&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.202100199&rft_dat=%3Cproquest_cross%3E2561923146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561923146&rft_id=info:pmid/34392609&rfr_iscdi=true