Automated ASPECTS for multi-modality CT predict infarct extent and outcome in large-vessel occlusion stroke
•CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome.•CTA-venous-ASPECTS facilitates treatment decisions after large vessel occlusion.•Best sensitivity of mismatch-ASPECTS to predict good outcomes after treatment. This study aimed to use the automated Alberta Stroke Progr...
Gespeichert in:
Veröffentlicht in: | European journal of radiology 2021-10, Vol.143, p.109899-109899, Article 109899 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109899 |
---|---|
container_issue | |
container_start_page | 109899 |
container_title | European journal of radiology |
container_volume | 143 |
creator | Cheng, XiaoQing Shi, JiaQian Wu, Hang Dong, Zheng Liu, Jia Lu, MengJie Zhou, ChangSheng Liu, QuanHui Su, XiaoQin Shi, Zhao Li, YingLe Zhu, WuSheng Lu, GuangMing |
description | •CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome.•CTA-venous-ASPECTS facilitates treatment decisions after large vessel occlusion.•Best sensitivity of mismatch-ASPECTS to predict good outcomes after treatment.
This study aimed to use the automated Alberta Stroke Program Early CT Score (ASPECTS) software to assess the value of different CT modalities (non-contrast CT, CT angiography [CTA]-arterial, CTA-venous, and arterial- and venous-phase mismatch-ASPECTS) in predicting the final infarct extent and clinical outcome in large-vessel occlusion stroke.
This retrospective study included patients with large-vessel occlusion stroke who underwent reperfusion therapy during 2015 to 2019. Correlations between different CT-ASPECTS modalities and follow-up CT-ASPECTS and outcome were determined using Spearman rank correlation coefficient. Receiver operating characteristic curve analysis was used to assess the ability of different CT-ASPECTS modalities to identify patients with good outcomes.
One hundred and thirty-five patients were included. We found almost-perfect correlation between CTA-venous-ASPECTS and follow-up CT-ASPECTS (r = 0.92; 95% CI: 0.89–0.95), better than that in other CT modalities. The 90-day modified Rankin scale (mRS) score substantially correlated with CTA-venous-ASPECTS (r = -0.64; 95% CI: −0.73 to −0.52). The ROC curve analysis showed CTA-venous-ASPECTS had the highest area under the curve (AUC: 0.82; 95% CI: 0.75–0.89; P |
doi_str_mv | 10.1016/j.ejrad.2021.109899 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561917273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X21003806</els_id><sourcerecordid>2561917273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8f3817b430df7572066aab7d13a134d1a2ec7e8d0f9bb6f2d1873635f23653923</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wE2Wbqbm0ZnMLFyUUh8gKLSCu5AmN5J2ZlKTTNF_b2pduzpw7zmXez6ErimZUEKr280ENkGZCSOM5klTN80JGtFasEIIJk7RiAhGCjKt38_RRYwbQkg5bdgIbWdD8p1KYPBs-bqYr5bY-oC7oU2u6LxRrUvfeL7CuwDG6YRdb1XICl8J-oRVb7AfkvYd5BVuVfiAYg8xQou91u0Qne9xTMFv4RKdWdVGuPrTMXq7X6zmj8Xzy8PTfPZcaM6rVNSW11Ssp5wYK8r8d1UptRaGckX51FDFQAuoDbHNel1ZZnJPXvHSMl6VvGF8jG6Od3fBfw4Qk-xc1NC2qgc_RMnKijY0c-HZyo9WHXyMAazcBdep8C0pkQe0ciN_0coDWnlEm1N3xxTkFnsHQUbtoNeZUACdpPHu3_wP0LyDbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561917273</pqid></control><display><type>article</type><title>Automated ASPECTS for multi-modality CT predict infarct extent and outcome in large-vessel occlusion stroke</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Cheng, XiaoQing ; Shi, JiaQian ; Wu, Hang ; Dong, Zheng ; Liu, Jia ; Lu, MengJie ; Zhou, ChangSheng ; Liu, QuanHui ; Su, XiaoQin ; Shi, Zhao ; Li, YingLe ; Zhu, WuSheng ; Lu, GuangMing</creator><creatorcontrib>Cheng, XiaoQing ; Shi, JiaQian ; Wu, Hang ; Dong, Zheng ; Liu, Jia ; Lu, MengJie ; Zhou, ChangSheng ; Liu, QuanHui ; Su, XiaoQin ; Shi, Zhao ; Li, YingLe ; Zhu, WuSheng ; Lu, GuangMing</creatorcontrib><description>•CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome.•CTA-venous-ASPECTS facilitates treatment decisions after large vessel occlusion.•Best sensitivity of mismatch-ASPECTS to predict good outcomes after treatment.
This study aimed to use the automated Alberta Stroke Program Early CT Score (ASPECTS) software to assess the value of different CT modalities (non-contrast CT, CT angiography [CTA]-arterial, CTA-venous, and arterial- and venous-phase mismatch-ASPECTS) in predicting the final infarct extent and clinical outcome in large-vessel occlusion stroke.
This retrospective study included patients with large-vessel occlusion stroke who underwent reperfusion therapy during 2015 to 2019. Correlations between different CT-ASPECTS modalities and follow-up CT-ASPECTS and outcome were determined using Spearman rank correlation coefficient. Receiver operating characteristic curve analysis was used to assess the ability of different CT-ASPECTS modalities to identify patients with good outcomes.
One hundred and thirty-five patients were included. We found almost-perfect correlation between CTA-venous-ASPECTS and follow-up CT-ASPECTS (r = 0.92; 95% CI: 0.89–0.95), better than that in other CT modalities. The 90-day modified Rankin scale (mRS) score substantially correlated with CTA-venous-ASPECTS (r = -0.64; 95% CI: −0.73 to −0.52). The ROC curve analysis showed CTA-venous-ASPECTS had the highest area under the curve (AUC: 0.82; 95% CI: 0.75–0.89; P < 0.001), followed by mismatch-ASPECTS (AUC: 0.75; 95% CI: 0.65–0.85; P < 0.001). When emphasizing the sensitivity for identifying patients with good outcomes, the best cut-off point of mismatch-ASPECTS was −3 with the highest sensitivity (91.30%).
CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome. Furthermore, mismatch-ASPECTS may represent images in different angiographic phases and was sensitive for prognosis prediction.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2021.109899</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Angiography ; Artificial intelligence ; Computed tomography ; Middle cerebral artery occlusion ; Stroke</subject><ispartof>European journal of radiology, 2021-10, Vol.143, p.109899-109899, Article 109899</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8f3817b430df7572066aab7d13a134d1a2ec7e8d0f9bb6f2d1873635f23653923</citedby><cites>FETCH-LOGICAL-c336t-8f3817b430df7572066aab7d13a134d1a2ec7e8d0f9bb6f2d1873635f23653923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejrad.2021.109899$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Cheng, XiaoQing</creatorcontrib><creatorcontrib>Shi, JiaQian</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Lu, MengJie</creatorcontrib><creatorcontrib>Zhou, ChangSheng</creatorcontrib><creatorcontrib>Liu, QuanHui</creatorcontrib><creatorcontrib>Su, XiaoQin</creatorcontrib><creatorcontrib>Shi, Zhao</creatorcontrib><creatorcontrib>Li, YingLe</creatorcontrib><creatorcontrib>Zhu, WuSheng</creatorcontrib><creatorcontrib>Lu, GuangMing</creatorcontrib><title>Automated ASPECTS for multi-modality CT predict infarct extent and outcome in large-vessel occlusion stroke</title><title>European journal of radiology</title><description>•CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome.•CTA-venous-ASPECTS facilitates treatment decisions after large vessel occlusion.•Best sensitivity of mismatch-ASPECTS to predict good outcomes after treatment.
This study aimed to use the automated Alberta Stroke Program Early CT Score (ASPECTS) software to assess the value of different CT modalities (non-contrast CT, CT angiography [CTA]-arterial, CTA-venous, and arterial- and venous-phase mismatch-ASPECTS) in predicting the final infarct extent and clinical outcome in large-vessel occlusion stroke.
This retrospective study included patients with large-vessel occlusion stroke who underwent reperfusion therapy during 2015 to 2019. Correlations between different CT-ASPECTS modalities and follow-up CT-ASPECTS and outcome were determined using Spearman rank correlation coefficient. Receiver operating characteristic curve analysis was used to assess the ability of different CT-ASPECTS modalities to identify patients with good outcomes.
One hundred and thirty-five patients were included. We found almost-perfect correlation between CTA-venous-ASPECTS and follow-up CT-ASPECTS (r = 0.92; 95% CI: 0.89–0.95), better than that in other CT modalities. The 90-day modified Rankin scale (mRS) score substantially correlated with CTA-venous-ASPECTS (r = -0.64; 95% CI: −0.73 to −0.52). The ROC curve analysis showed CTA-venous-ASPECTS had the highest area under the curve (AUC: 0.82; 95% CI: 0.75–0.89; P < 0.001), followed by mismatch-ASPECTS (AUC: 0.75; 95% CI: 0.65–0.85; P < 0.001). When emphasizing the sensitivity for identifying patients with good outcomes, the best cut-off point of mismatch-ASPECTS was −3 with the highest sensitivity (91.30%).
CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome. Furthermore, mismatch-ASPECTS may represent images in different angiographic phases and was sensitive for prognosis prediction.</description><subject>Angiography</subject><subject>Artificial intelligence</subject><subject>Computed tomography</subject><subject>Middle cerebral artery occlusion</subject><subject>Stroke</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wE2Wbqbm0ZnMLFyUUh8gKLSCu5AmN5J2ZlKTTNF_b2pduzpw7zmXez6ErimZUEKr280ENkGZCSOM5klTN80JGtFasEIIJk7RiAhGCjKt38_RRYwbQkg5bdgIbWdD8p1KYPBs-bqYr5bY-oC7oU2u6LxRrUvfeL7CuwDG6YRdb1XICl8J-oRVb7AfkvYd5BVuVfiAYg8xQou91u0Qne9xTMFv4RKdWdVGuPrTMXq7X6zmj8Xzy8PTfPZcaM6rVNSW11Ssp5wYK8r8d1UptRaGckX51FDFQAuoDbHNel1ZZnJPXvHSMl6VvGF8jG6Od3fBfw4Qk-xc1NC2qgc_RMnKijY0c-HZyo9WHXyMAazcBdep8C0pkQe0ciN_0coDWnlEm1N3xxTkFnsHQUbtoNeZUACdpPHu3_wP0LyDbQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Cheng, XiaoQing</creator><creator>Shi, JiaQian</creator><creator>Wu, Hang</creator><creator>Dong, Zheng</creator><creator>Liu, Jia</creator><creator>Lu, MengJie</creator><creator>Zhou, ChangSheng</creator><creator>Liu, QuanHui</creator><creator>Su, XiaoQin</creator><creator>Shi, Zhao</creator><creator>Li, YingLe</creator><creator>Zhu, WuSheng</creator><creator>Lu, GuangMing</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Automated ASPECTS for multi-modality CT predict infarct extent and outcome in large-vessel occlusion stroke</title><author>Cheng, XiaoQing ; Shi, JiaQian ; Wu, Hang ; Dong, Zheng ; Liu, Jia ; Lu, MengJie ; Zhou, ChangSheng ; Liu, QuanHui ; Su, XiaoQin ; Shi, Zhao ; Li, YingLe ; Zhu, WuSheng ; Lu, GuangMing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8f3817b430df7572066aab7d13a134d1a2ec7e8d0f9bb6f2d1873635f23653923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiography</topic><topic>Artificial intelligence</topic><topic>Computed tomography</topic><topic>Middle cerebral artery occlusion</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, XiaoQing</creatorcontrib><creatorcontrib>Shi, JiaQian</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Lu, MengJie</creatorcontrib><creatorcontrib>Zhou, ChangSheng</creatorcontrib><creatorcontrib>Liu, QuanHui</creatorcontrib><creatorcontrib>Su, XiaoQin</creatorcontrib><creatorcontrib>Shi, Zhao</creatorcontrib><creatorcontrib>Li, YingLe</creatorcontrib><creatorcontrib>Zhu, WuSheng</creatorcontrib><creatorcontrib>Lu, GuangMing</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, XiaoQing</au><au>Shi, JiaQian</au><au>Wu, Hang</au><au>Dong, Zheng</au><au>Liu, Jia</au><au>Lu, MengJie</au><au>Zhou, ChangSheng</au><au>Liu, QuanHui</au><au>Su, XiaoQin</au><au>Shi, Zhao</au><au>Li, YingLe</au><au>Zhu, WuSheng</au><au>Lu, GuangMing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated ASPECTS for multi-modality CT predict infarct extent and outcome in large-vessel occlusion stroke</atitle><jtitle>European journal of radiology</jtitle><date>2021-10</date><risdate>2021</risdate><volume>143</volume><spage>109899</spage><epage>109899</epage><pages>109899-109899</pages><artnum>109899</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>•CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome.•CTA-venous-ASPECTS facilitates treatment decisions after large vessel occlusion.•Best sensitivity of mismatch-ASPECTS to predict good outcomes after treatment.
This study aimed to use the automated Alberta Stroke Program Early CT Score (ASPECTS) software to assess the value of different CT modalities (non-contrast CT, CT angiography [CTA]-arterial, CTA-venous, and arterial- and venous-phase mismatch-ASPECTS) in predicting the final infarct extent and clinical outcome in large-vessel occlusion stroke.
This retrospective study included patients with large-vessel occlusion stroke who underwent reperfusion therapy during 2015 to 2019. Correlations between different CT-ASPECTS modalities and follow-up CT-ASPECTS and outcome were determined using Spearman rank correlation coefficient. Receiver operating characteristic curve analysis was used to assess the ability of different CT-ASPECTS modalities to identify patients with good outcomes.
One hundred and thirty-five patients were included. We found almost-perfect correlation between CTA-venous-ASPECTS and follow-up CT-ASPECTS (r = 0.92; 95% CI: 0.89–0.95), better than that in other CT modalities. The 90-day modified Rankin scale (mRS) score substantially correlated with CTA-venous-ASPECTS (r = -0.64; 95% CI: −0.73 to −0.52). The ROC curve analysis showed CTA-venous-ASPECTS had the highest area under the curve (AUC: 0.82; 95% CI: 0.75–0.89; P < 0.001), followed by mismatch-ASPECTS (AUC: 0.75; 95% CI: 0.65–0.85; P < 0.001). When emphasizing the sensitivity for identifying patients with good outcomes, the best cut-off point of mismatch-ASPECTS was −3 with the highest sensitivity (91.30%).
CTA-venous-ASPECTS is a reliable tool to predict the infarct extent and outcome. Furthermore, mismatch-ASPECTS may represent images in different angiographic phases and was sensitive for prognosis prediction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ejrad.2021.109899</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0720-048X |
ispartof | European journal of radiology, 2021-10, Vol.143, p.109899-109899, Article 109899 |
issn | 0720-048X 1872-7727 |
language | eng |
recordid | cdi_proquest_miscellaneous_2561917273 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Angiography Artificial intelligence Computed tomography Middle cerebral artery occlusion Stroke |
title | Automated ASPECTS for multi-modality CT predict infarct extent and outcome in large-vessel occlusion stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20ASPECTS%20for%20multi-modality%20CT%20predict%20infarct%20extent%20and%20outcome%20in%20large-vessel%20occlusion%20stroke&rft.jtitle=European%20journal%20of%20radiology&rft.au=Cheng,%20XiaoQing&rft.date=2021-10&rft.volume=143&rft.spage=109899&rft.epage=109899&rft.pages=109899-109899&rft.artnum=109899&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2021.109899&rft_dat=%3Cproquest_cross%3E2561917273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561917273&rft_id=info:pmid/&rft_els_id=S0720048X21003806&rfr_iscdi=true |