The truncated TNL receptor TN2‐mediated immune responses require ADR1 function

SUMMARY The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR‐NBS2 (TN2), a truncated intracellular nucleotide‐binding and leucine‐rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2‐activated re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2021-11, Vol.108 (3), p.672-689
Hauptverfasser: Wang, Wei, Liu, Na, Gao, Chenyang, Rui, Lu, Jiang, Qiaochu, Chen, Shuling, Zhang, Qin, Zhong, Guitao, Tang, Dingzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 3
container_start_page 672
container_title The Plant journal : for cell and molecular biology
container_volume 108
creator Wang, Wei
Liu, Na
Gao, Chenyang
Rui, Lu
Jiang, Qiaochu
Chen, Shuling
Zhang, Qin
Zhong, Guitao
Tang, Dingzhong
description SUMMARY The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR‐NBS2 (TN2), a truncated intracellular nucleotide‐binding and leucine‐rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2‐activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1‐3 were independent of the full‐length NLR SOC3 and its closest homolog SOC3‐LIKE 1 (SOC3‐L1). Additionally, knocking out SOC3‐L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1‐2 (chs1‐2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1‐3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1‐3. Furthermore, overexpression of TN2 also led to ADR1‐dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2‐triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation. Significance Statement In this study, we found that the truncated NLR protein TN2‐activated immune responses in exo70B1‐3 required helper RNL proteins ADR1s, but not NRG1s. The expression of TN2 in exo70B1‐3 was regulated by ADR1s in a positive feedback loop. Overexpression of TN2 also led to ADR1‐dependent autoimmunity in Arabidopsis. These data uncovered that the resistance mediated by the TN‐type protein TN2 requires ADR1s as helper NLRs, revealing the importance and complexity of ADR1s in plant immunity regulation.
doi_str_mv 10.1111/tpj.15463
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561912860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561912860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3883-ff6dfc711bf4f39e385f0f005f9aab56258d23e1a247828182913f3458d532f93</originalsourceid><addsrcrecordid>eNp1kMtKw0AUQAdRbK0u_AEJuNFF2rlzM5NkKfVN0SIR3IU0mcGUvDqTIN35CX6jX-LYVBeCs5nHPRyGQ8gx0DHYNWmb5Ri4J3CHDAEFdxHwZZcMaSio63vABuTAmCWl4KPw9skAPQyFQBiSefQqnVZ3VZq0MnOih5mjZSqbttb2wj7fP0qZ5ZtZXpZdJe3YNHVlpLGnVZdr6VxcPoGjrKLN6-qQ7KmkMPJou4_I8_VVNL11Z483d9OLmZtiEKCrlMhU6gMslKcwlBhwRRWlXIVJsuCC8SBjKCFhnh-wAAIWAir07DNHpkIckbPe2-h61UnTxmVuUlkUSSXrzsSMCwiBBYJa9PQPuqw7XdnfWSq0TiYYWOq8p1JdG6Olihudl4lex0Dj78yxzRxvMlv2ZGvsFrbPL_nT1QKTHnjLC7n-3xRH8_te-QXVNYWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593452621</pqid></control><display><type>article</type><title>The truncated TNL receptor TN2‐mediated immune responses require ADR1 function</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Wang, Wei ; Liu, Na ; Gao, Chenyang ; Rui, Lu ; Jiang, Qiaochu ; Chen, Shuling ; Zhang, Qin ; Zhong, Guitao ; Tang, Dingzhong</creator><creatorcontrib>Wang, Wei ; Liu, Na ; Gao, Chenyang ; Rui, Lu ; Jiang, Qiaochu ; Chen, Shuling ; Zhang, Qin ; Zhong, Guitao ; Tang, Dingzhong</creatorcontrib><description>SUMMARY The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR‐NBS2 (TN2), a truncated intracellular nucleotide‐binding and leucine‐rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2‐activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1‐3 were independent of the full‐length NLR SOC3 and its closest homolog SOC3‐LIKE 1 (SOC3‐L1). Additionally, knocking out SOC3‐L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1‐2 (chs1‐2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1‐3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1‐3. Furthermore, overexpression of TN2 also led to ADR1‐dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2‐triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation. Significance Statement In this study, we found that the truncated NLR protein TN2‐activated immune responses in exo70B1‐3 required helper RNL proteins ADR1s, but not NRG1s. The expression of TN2 in exo70B1‐3 was regulated by ADR1s in a positive feedback loop. Overexpression of TN2 also led to ADR1‐dependent autoimmunity in Arabidopsis. These data uncovered that the resistance mediated by the TN‐type protein TN2 requires ADR1s as helper NLRs, revealing the importance and complexity of ADR1s in plant immunity regulation.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15463</identifier><identifier>PMID: 34396631</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>ADR1 ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - immunology ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Ascomycota - pathogenicity ; Autoimmunity ; Cell Death ; Chilling ; Cooling ; CRISPR ; Disease resistance ; Disease Resistance - genetics ; Disease Resistance - immunology ; EXO70B1 ; Gene Expression Regulation, Plant ; Genetic analysis ; Genetic modification ; Homology ; Immune response ; Immunity ; Leucine ; NLR protein ; NLR Proteins - genetics ; NLR Proteins - metabolism ; Nucleotides ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant Immunity ; Plants, Genetically Modified ; Pseudomonas syringae - pathogenicity ; Receptors ; SOC3 ; TN2 ; Transcription ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - immunology ; Vesicular Transport Proteins - metabolism</subject><ispartof>The Plant journal : for cell and molecular biology, 2021-11, Vol.108 (3), p.672-689</ispartof><rights>2021 Society for Experimental Biology and John Wiley &amp; Sons Ltd</rights><rights>2021 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3883-ff6dfc711bf4f39e385f0f005f9aab56258d23e1a247828182913f3458d532f93</citedby><cites>FETCH-LOGICAL-c3883-ff6dfc711bf4f39e385f0f005f9aab56258d23e1a247828182913f3458d532f93</cites><orcidid>0000-0001-8850-8754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15463$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15463$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34396631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Gao, Chenyang</creatorcontrib><creatorcontrib>Rui, Lu</creatorcontrib><creatorcontrib>Jiang, Qiaochu</creatorcontrib><creatorcontrib>Chen, Shuling</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Zhong, Guitao</creatorcontrib><creatorcontrib>Tang, Dingzhong</creatorcontrib><title>The truncated TNL receptor TN2‐mediated immune responses require ADR1 function</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR‐NBS2 (TN2), a truncated intracellular nucleotide‐binding and leucine‐rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2‐activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1‐3 were independent of the full‐length NLR SOC3 and its closest homolog SOC3‐LIKE 1 (SOC3‐L1). Additionally, knocking out SOC3‐L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1‐2 (chs1‐2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1‐3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1‐3. Furthermore, overexpression of TN2 also led to ADR1‐dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2‐triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation. Significance Statement In this study, we found that the truncated NLR protein TN2‐activated immune responses in exo70B1‐3 required helper RNL proteins ADR1s, but not NRG1s. The expression of TN2 in exo70B1‐3 was regulated by ADR1s in a positive feedback loop. Overexpression of TN2 also led to ADR1‐dependent autoimmunity in Arabidopsis. These data uncovered that the resistance mediated by the TN‐type protein TN2 requires ADR1s as helper NLRs, revealing the importance and complexity of ADR1s in plant immunity regulation.</description><subject>ADR1</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - immunology</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Ascomycota - pathogenicity</subject><subject>Autoimmunity</subject><subject>Cell Death</subject><subject>Chilling</subject><subject>Cooling</subject><subject>CRISPR</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Disease Resistance - immunology</subject><subject>EXO70B1</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic analysis</subject><subject>Genetic modification</subject><subject>Homology</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Leucine</subject><subject>NLR protein</subject><subject>NLR Proteins - genetics</subject><subject>NLR Proteins - metabolism</subject><subject>Nucleotides</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Immunity</subject><subject>Plants, Genetically Modified</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>Receptors</subject><subject>SOC3</subject><subject>TN2</subject><subject>Transcription</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - immunology</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKw0AUQAdRbK0u_AEJuNFF2rlzM5NkKfVN0SIR3IU0mcGUvDqTIN35CX6jX-LYVBeCs5nHPRyGQ8gx0DHYNWmb5Ri4J3CHDAEFdxHwZZcMaSio63vABuTAmCWl4KPw9skAPQyFQBiSefQqnVZ3VZq0MnOih5mjZSqbttb2wj7fP0qZ5ZtZXpZdJe3YNHVlpLGnVZdr6VxcPoGjrKLN6-qQ7KmkMPJou4_I8_VVNL11Z483d9OLmZtiEKCrlMhU6gMslKcwlBhwRRWlXIVJsuCC8SBjKCFhnh-wAAIWAir07DNHpkIckbPe2-h61UnTxmVuUlkUSSXrzsSMCwiBBYJa9PQPuqw7XdnfWSq0TiYYWOq8p1JdG6Olihudl4lex0Dj78yxzRxvMlv2ZGvsFrbPL_nT1QKTHnjLC7n-3xRH8_te-QXVNYWs</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Wang, Wei</creator><creator>Liu, Na</creator><creator>Gao, Chenyang</creator><creator>Rui, Lu</creator><creator>Jiang, Qiaochu</creator><creator>Chen, Shuling</creator><creator>Zhang, Qin</creator><creator>Zhong, Guitao</creator><creator>Tang, Dingzhong</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8850-8754</orcidid></search><sort><creationdate>202111</creationdate><title>The truncated TNL receptor TN2‐mediated immune responses require ADR1 function</title><author>Wang, Wei ; Liu, Na ; Gao, Chenyang ; Rui, Lu ; Jiang, Qiaochu ; Chen, Shuling ; Zhang, Qin ; Zhong, Guitao ; Tang, Dingzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3883-ff6dfc711bf4f39e385f0f005f9aab56258d23e1a247828182913f3458d532f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ADR1</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - immunology</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Ascomycota - pathogenicity</topic><topic>Autoimmunity</topic><topic>Cell Death</topic><topic>Chilling</topic><topic>Cooling</topic><topic>CRISPR</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Disease Resistance - immunology</topic><topic>EXO70B1</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic analysis</topic><topic>Genetic modification</topic><topic>Homology</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Leucine</topic><topic>NLR protein</topic><topic>NLR Proteins - genetics</topic><topic>NLR Proteins - metabolism</topic><topic>Nucleotides</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Immunity</topic><topic>Plants, Genetically Modified</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>Receptors</topic><topic>SOC3</topic><topic>TN2</topic><topic>Transcription</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - immunology</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Gao, Chenyang</creatorcontrib><creatorcontrib>Rui, Lu</creatorcontrib><creatorcontrib>Jiang, Qiaochu</creatorcontrib><creatorcontrib>Chen, Shuling</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Zhong, Guitao</creatorcontrib><creatorcontrib>Tang, Dingzhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Liu, Na</au><au>Gao, Chenyang</au><au>Rui, Lu</au><au>Jiang, Qiaochu</au><au>Chen, Shuling</au><au>Zhang, Qin</au><au>Zhong, Guitao</au><au>Tang, Dingzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The truncated TNL receptor TN2‐mediated immune responses require ADR1 function</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2021-11</date><risdate>2021</risdate><volume>108</volume><issue>3</issue><spage>672</spage><epage>689</epage><pages>672-689</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR‐NBS2 (TN2), a truncated intracellular nucleotide‐binding and leucine‐rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2‐activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1‐3 were independent of the full‐length NLR SOC3 and its closest homolog SOC3‐LIKE 1 (SOC3‐L1). Additionally, knocking out SOC3‐L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1‐2 (chs1‐2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1‐3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1‐3. Furthermore, overexpression of TN2 also led to ADR1‐dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2‐triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation. Significance Statement In this study, we found that the truncated NLR protein TN2‐activated immune responses in exo70B1‐3 required helper RNL proteins ADR1s, but not NRG1s. The expression of TN2 in exo70B1‐3 was regulated by ADR1s in a positive feedback loop. Overexpression of TN2 also led to ADR1‐dependent autoimmunity in Arabidopsis. These data uncovered that the resistance mediated by the TN‐type protein TN2 requires ADR1s as helper NLRs, revealing the importance and complexity of ADR1s in plant immunity regulation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>34396631</pmid><doi>10.1111/tpj.15463</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8850-8754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2021-11, Vol.108 (3), p.672-689
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2561912860
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects ADR1
Arabidopsis - cytology
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - immunology
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Ascomycota - pathogenicity
Autoimmunity
Cell Death
Chilling
Cooling
CRISPR
Disease resistance
Disease Resistance - genetics
Disease Resistance - immunology
EXO70B1
Gene Expression Regulation, Plant
Genetic analysis
Genetic modification
Homology
Immune response
Immunity
Leucine
NLR protein
NLR Proteins - genetics
NLR Proteins - metabolism
Nucleotides
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Immunity
Plants, Genetically Modified
Pseudomonas syringae - pathogenicity
Receptors
SOC3
TN2
Transcription
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - immunology
Vesicular Transport Proteins - metabolism
title The truncated TNL receptor TN2‐mediated immune responses require ADR1 function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20truncated%20TNL%20receptor%20TN2%E2%80%90mediated%20immune%20responses%20require%20ADR1%20function&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Wang,%20Wei&rft.date=2021-11&rft.volume=108&rft.issue=3&rft.spage=672&rft.epage=689&rft.pages=672-689&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15463&rft_dat=%3Cproquest_cross%3E2561912860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593452621&rft_id=info:pmid/34396631&rfr_iscdi=true