Membrane Materials for Selective Ion Separations at the Water–Energy Nexus
Synthetic polymer membranes are enabling components in key technologies at the water–energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water–energy nexus require ion selectivity, or separa...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-09, Vol.33 (38), p.e2101312-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e2101312 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | DuChanois, Ryan M. Porter, Cassandra J. Violet, Camille Verduzco, Rafael Elimelech, Menachem |
description | Synthetic polymer membranes are enabling components in key technologies at the water–energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water–energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion–membrane interactions is described. In view of the limitations of polymeric membranes, three material classes—porous crystalline materials, 2D materials, and discrete biomimetic channels—are highlighted as possible candidates for ion‐selective membranes owing to their molecular‐level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
Emerging water and energy technologies often require membranes that selectively separate an ion from similar species. Progress in enhancing selective ion transport in polymeric membranes is described, followed by analysis of three advanced material classes that are possible candidates for ion‐selective membranes owing to their molecular‐level control over physicochemical properties. Research directions and challenges for developing ion‐selective membranes are discussed. |
doi_str_mv | 10.1002/adma.202101312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561911841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561911841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4162-15fb405448d7eb4e4df9a6d48dab2f1f59b8720108507aa8990d07b9b4bb56533</originalsourceid><addsrcrecordid>eNqFkDFPwzAUhC0EEqWwMltiYUl5dmwnHqtSoFILAyBGy04cSJUmxU6AbvwH_iG_BEdFILEwPZ303eneIXRMYEQA6JnOV3pEgRIgMaE7aEA4JREDyXfRAGTMIylYuo8OvF8CgBQgBmi-sCvjdG3xQrfWlbryuGgcvrWVzdryxeJZUwe11k63ZVN7rFvcPln80OOf7x_T2rrHDb62b50_RHtFCLBH33eI7i-md5OraH5zOZuM51HGiKAR4YVhwBlL88QaZlleSC3yILWhBSm4NGlCgUDKIdE6lRJySIw0zBgueBwP0ek2d-2a5876Vq1Kn9mqCn80nVeUCyIJSRkJ6MkfdNl0rg7tApUwISCBPnC0pTLXeO9sodauXGm3UQRUP67qx1U_4waD3Bpey8pu_qHV-Hwx_vV-AS-2fRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574660703</pqid></control><display><type>article</type><title>Membrane Materials for Selective Ion Separations at the Water–Energy Nexus</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>DuChanois, Ryan M. ; Porter, Cassandra J. ; Violet, Camille ; Verduzco, Rafael ; Elimelech, Menachem</creator><creatorcontrib>DuChanois, Ryan M. ; Porter, Cassandra J. ; Violet, Camille ; Verduzco, Rafael ; Elimelech, Menachem</creatorcontrib><description>Synthetic polymer membranes are enabling components in key technologies at the water–energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water–energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion–membrane interactions is described. In view of the limitations of polymeric membranes, three material classes—porous crystalline materials, 2D materials, and discrete biomimetic channels—are highlighted as possible candidates for ion‐selective membranes owing to their molecular‐level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
Emerging water and energy technologies often require membranes that selectively separate an ion from similar species. Progress in enhancing selective ion transport in polymeric membranes is described, followed by analysis of three advanced material classes that are possible candidates for ion‐selective membranes owing to their molecular‐level control over physicochemical properties. Research directions and challenges for developing ion‐selective membranes are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101312</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biomimetic materials ; Chemical properties ; Desalination ; Energy conversion ; flow battery ; Ion currents ; ion selectivity ; Materials science ; Materials selection ; Membranes ; Porous materials ; resource recovery ; Selectivity ; Two dimensional materials ; water treatment</subject><ispartof>Advanced materials (Weinheim), 2021-09, Vol.33 (38), p.e2101312-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4162-15fb405448d7eb4e4df9a6d48dab2f1f59b8720108507aa8990d07b9b4bb56533</citedby><cites>FETCH-LOGICAL-c4162-15fb405448d7eb4e4df9a6d48dab2f1f59b8720108507aa8990d07b9b4bb56533</cites><orcidid>0000-0002-3463-5958 ; 0000-0003-0698-7283 ; 0000-0003-4186-1563 ; 0000-0002-3649-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>DuChanois, Ryan M.</creatorcontrib><creatorcontrib>Porter, Cassandra J.</creatorcontrib><creatorcontrib>Violet, Camille</creatorcontrib><creatorcontrib>Verduzco, Rafael</creatorcontrib><creatorcontrib>Elimelech, Menachem</creatorcontrib><title>Membrane Materials for Selective Ion Separations at the Water–Energy Nexus</title><title>Advanced materials (Weinheim)</title><description>Synthetic polymer membranes are enabling components in key technologies at the water–energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water–energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion–membrane interactions is described. In view of the limitations of polymeric membranes, three material classes—porous crystalline materials, 2D materials, and discrete biomimetic channels—are highlighted as possible candidates for ion‐selective membranes owing to their molecular‐level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
Emerging water and energy technologies often require membranes that selectively separate an ion from similar species. Progress in enhancing selective ion transport in polymeric membranes is described, followed by analysis of three advanced material classes that are possible candidates for ion‐selective membranes owing to their molecular‐level control over physicochemical properties. Research directions and challenges for developing ion‐selective membranes are discussed.</description><subject>Biomimetic materials</subject><subject>Chemical properties</subject><subject>Desalination</subject><subject>Energy conversion</subject><subject>flow battery</subject><subject>Ion currents</subject><subject>ion selectivity</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Membranes</subject><subject>Porous materials</subject><subject>resource recovery</subject><subject>Selectivity</subject><subject>Two dimensional materials</subject><subject>water treatment</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAUhC0EEqWwMltiYUl5dmwnHqtSoFILAyBGy04cSJUmxU6AbvwH_iG_BEdFILEwPZ303eneIXRMYEQA6JnOV3pEgRIgMaE7aEA4JREDyXfRAGTMIylYuo8OvF8CgBQgBmi-sCvjdG3xQrfWlbryuGgcvrWVzdryxeJZUwe11k63ZVN7rFvcPln80OOf7x_T2rrHDb62b50_RHtFCLBH33eI7i-md5OraH5zOZuM51HGiKAR4YVhwBlL88QaZlleSC3yILWhBSm4NGlCgUDKIdE6lRJySIw0zBgueBwP0ek2d-2a5876Vq1Kn9mqCn80nVeUCyIJSRkJ6MkfdNl0rg7tApUwISCBPnC0pTLXeO9sodauXGm3UQRUP67qx1U_4waD3Bpey8pu_qHV-Hwx_vV-AS-2fRY</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>DuChanois, Ryan M.</creator><creator>Porter, Cassandra J.</creator><creator>Violet, Camille</creator><creator>Verduzco, Rafael</creator><creator>Elimelech, Menachem</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3463-5958</orcidid><orcidid>https://orcid.org/0000-0003-0698-7283</orcidid><orcidid>https://orcid.org/0000-0003-4186-1563</orcidid><orcidid>https://orcid.org/0000-0002-3649-3455</orcidid></search><sort><creationdate>20210901</creationdate><title>Membrane Materials for Selective Ion Separations at the Water–Energy Nexus</title><author>DuChanois, Ryan M. ; Porter, Cassandra J. ; Violet, Camille ; Verduzco, Rafael ; Elimelech, Menachem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4162-15fb405448d7eb4e4df9a6d48dab2f1f59b8720108507aa8990d07b9b4bb56533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomimetic materials</topic><topic>Chemical properties</topic><topic>Desalination</topic><topic>Energy conversion</topic><topic>flow battery</topic><topic>Ion currents</topic><topic>ion selectivity</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Membranes</topic><topic>Porous materials</topic><topic>resource recovery</topic><topic>Selectivity</topic><topic>Two dimensional materials</topic><topic>water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuChanois, Ryan M.</creatorcontrib><creatorcontrib>Porter, Cassandra J.</creatorcontrib><creatorcontrib>Violet, Camille</creatorcontrib><creatorcontrib>Verduzco, Rafael</creatorcontrib><creatorcontrib>Elimelech, Menachem</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuChanois, Ryan M.</au><au>Porter, Cassandra J.</au><au>Violet, Camille</au><au>Verduzco, Rafael</au><au>Elimelech, Menachem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane Materials for Selective Ion Separations at the Water–Energy Nexus</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>38</issue><spage>e2101312</spage><epage>n/a</epage><pages>e2101312-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Synthetic polymer membranes are enabling components in key technologies at the water–energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water–energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion–membrane interactions is described. In view of the limitations of polymeric membranes, three material classes—porous crystalline materials, 2D materials, and discrete biomimetic channels—are highlighted as possible candidates for ion‐selective membranes owing to their molecular‐level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
Emerging water and energy technologies often require membranes that selectively separate an ion from similar species. Progress in enhancing selective ion transport in polymeric membranes is described, followed by analysis of three advanced material classes that are possible candidates for ion‐selective membranes owing to their molecular‐level control over physicochemical properties. Research directions and challenges for developing ion‐selective membranes are discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202101312</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3463-5958</orcidid><orcidid>https://orcid.org/0000-0003-0698-7283</orcidid><orcidid>https://orcid.org/0000-0003-4186-1563</orcidid><orcidid>https://orcid.org/0000-0002-3649-3455</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-09, Vol.33 (38), p.e2101312-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2561911841 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biomimetic materials Chemical properties Desalination Energy conversion flow battery Ion currents ion selectivity Materials science Materials selection Membranes Porous materials resource recovery Selectivity Two dimensional materials water treatment |
title | Membrane Materials for Selective Ion Separations at the Water–Energy Nexus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20Materials%20for%20Selective%20Ion%20Separations%20at%20the%20Water%E2%80%93Energy%20Nexus&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=DuChanois,%20Ryan%20M.&rft.date=2021-09-01&rft.volume=33&rft.issue=38&rft.spage=e2101312&rft.epage=n/a&rft.pages=e2101312-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101312&rft_dat=%3Cproquest_cross%3E2561911841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574660703&rft_id=info:pmid/&rfr_iscdi=true |