Effect of selected monovalent salts on surfactant stabilized foams
Surfactant-stabilized foams have been at the centre of scientific research for over a century due to their ubiquitous applications in different industries. Many of these applications involve inorganic salts either due to their natural presence (e.g. use of seawater in froth floatation) or their addi...
Gespeichert in:
Veröffentlicht in: | Advances in colloid and interface science 2021-09, Vol.295, p.102490-102490, Article 102490 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surfactant-stabilized foams have been at the centre of scientific research for over a century due to their ubiquitous applications in different industries. Many of these applications involve inorganic salts either due to their natural presence (e.g. use of seawater in froth floatation) or their addition (e.g. in cosmetics) to manipulate foam characteristics for the best outcomes. This paper provides a clear understanding of the effect of salts on surfactant-stabilized foams through a critical literature survey of this topic.
Available literature shows a double effect of salts (LiCl, NaCl and KCl) on foam characteristics in the presence of surfactants. To elucidate the underlying mechanisms of the stabilizing effect of salts on foams, the effect of salts on surfactant-free thin liquid films is first discussed, followed by a discussion on the effect of salts on surfactant-stabilized foams with the focus on anionic surfactants. We discuss two distinctive salt concentrations, salt transition concentration in surfactant-free solutions and salt critical concentration in surfactant-laden systems to explain their effects. Using the available data in literature supported by dedicated experiments, we demonstrate the destabilizing effect of salts on foams at and above their critical concentrations in the presence of anionic surfactants. This effect is attributed to retarding the adsorption of the surfactant molecules at the interface due to the formation of nano and micro-scale aggregates.
[Display omitted]
•Review of studies on the effect of salts on surfactant-free liquid films.•Critical review of studies on ion-specific effect on surfactant-stabilized foams.•Elucidating stabilizing mechanisms for the effect of salt on surfactant-laden foams.•Demonstrating the destabilizing effect of salts at and beyond their critical concentrations. |
---|---|
ISSN: | 0001-8686 1873-3727 |
DOI: | 10.1016/j.cis.2021.102490 |