An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images
Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2021-09, Vol.136, p.104749-104749, Article 104749 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104749 |
---|---|
container_issue | |
container_start_page | 104749 |
container_title | Computers in biology and medicine |
container_volume | 136 |
creator | Luo, Guoting Yang, Qing Chen, Tao Zheng, Tao Xie, Wei Sun, Huaiqiang |
description | Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources.
•A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity. |
doi_str_mv | 10.1016/j.compbiomed.2021.104749 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561487145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521005436</els_id><sourcerecordid>2561487145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKv_IeDGzdSXTKaTWdbiFxTc1IWrkEnelNTOZExmFP31plQQ3Lh6cDnvwL2EUAYzBmx-vZ0Z3_a18y3aGQfOUixKUR2RCZNllUGRi2MyAWCQCcmLU3IW4xYABOQwIS-Ljvp-cK37QkuHD5_FQW-QGh2NtimyiD3tcAx6l04CwittfKDaBuxSFnHTYjfowflk6uhyTV2bDPGcnDR6F_Hi507J893tevmQrZ7uH5eLVWbyshoyyytpy4IhytqgrLjRteYgGs3N3FpWNxUTUheMFdLWc9bwvAQpdI05NxZMPiVXB28f_NuIcVCtiwZ3O92hH6PixTwJSiaKhF7-Qbd-DKnFnipB5LJge0oeKBN8jAEb1YdUKXwqBmq_udqq383VfnN12Dy93hxeMRV-dxhUNA47g9YFNIOy3v0v-QY8fY_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570438515</pqid></control><display><type>article</type><title>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</title><source>Elsevier ScienceDirect Journals</source><creator>Luo, Guoting ; Yang, Qing ; Chen, Tao ; Zheng, Tao ; Xie, Wei ; Sun, Huaiqiang</creator><creatorcontrib>Luo, Guoting ; Yang, Qing ; Chen, Tao ; Zheng, Tao ; Xie, Wei ; Sun, Huaiqiang</creatorcontrib><description>Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources.
•A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104749</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Abdomen ; Accuracy ; Adrenal gland ; Adrenal glands ; Artificial neural networks ; Computed tomography ; Computer applications ; Convolutional neural network ; Deep learning ; Image processing ; Image segmentation ; Localization ; Machine learning ; Medical imaging ; Neural networks</subject><ispartof>Computers in biology and medicine, 2021-09, Vol.136, p.104749-104749, Article 104749</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</citedby><cites>FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</cites><orcidid>0000-0003-0687-6065 ; 0000-0001-6726-0710 ; 0000-0002-8371-779X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482521005436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Luo, Guoting</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Sun, Huaiqiang</creatorcontrib><title>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</title><title>Computers in biology and medicine</title><description>Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources.
•A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.</description><subject>Abdomen</subject><subject>Accuracy</subject><subject>Adrenal gland</subject><subject>Adrenal glands</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LAzEURYMoWKv_IeDGzdSXTKaTWdbiFxTc1IWrkEnelNTOZExmFP31plQQ3Lh6cDnvwL2EUAYzBmx-vZ0Z3_a18y3aGQfOUixKUR2RCZNllUGRi2MyAWCQCcmLU3IW4xYABOQwIS-Ljvp-cK37QkuHD5_FQW-QGh2NtimyiD3tcAx6l04CwittfKDaBuxSFnHTYjfowflk6uhyTV2bDPGcnDR6F_Hi507J893tevmQrZ7uH5eLVWbyshoyyytpy4IhytqgrLjRteYgGs3N3FpWNxUTUheMFdLWc9bwvAQpdI05NxZMPiVXB28f_NuIcVCtiwZ3O92hH6PixTwJSiaKhF7-Qbd-DKnFnipB5LJge0oeKBN8jAEb1YdUKXwqBmq_udqq383VfnN12Dy93hxeMRV-dxhUNA47g9YFNIOy3v0v-QY8fY_M</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Luo, Guoting</creator><creator>Yang, Qing</creator><creator>Chen, Tao</creator><creator>Zheng, Tao</creator><creator>Xie, Wei</creator><creator>Sun, Huaiqiang</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0687-6065</orcidid><orcidid>https://orcid.org/0000-0001-6726-0710</orcidid><orcidid>https://orcid.org/0000-0002-8371-779X</orcidid></search><sort><creationdate>202109</creationdate><title>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</title><author>Luo, Guoting ; Yang, Qing ; Chen, Tao ; Zheng, Tao ; Xie, Wei ; Sun, Huaiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abdomen</topic><topic>Accuracy</topic><topic>Adrenal gland</topic><topic>Adrenal glands</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Guoting</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Sun, Huaiqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Guoting</au><au>Yang, Qing</au><au>Chen, Tao</au><au>Zheng, Tao</au><au>Xie, Wei</au><au>Sun, Huaiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</atitle><jtitle>Computers in biology and medicine</jtitle><date>2021-09</date><risdate>2021</risdate><volume>136</volume><spage>104749</spage><epage>104749</epage><pages>104749-104749</pages><artnum>104749</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources.
•A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2021.104749</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0687-6065</orcidid><orcidid>https://orcid.org/0000-0001-6726-0710</orcidid><orcidid>https://orcid.org/0000-0002-8371-779X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2021-09, Vol.136, p.104749-104749, Article 104749 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2561487145 |
source | Elsevier ScienceDirect Journals |
subjects | Abdomen Accuracy Adrenal gland Adrenal glands Artificial neural networks Computed tomography Computer applications Convolutional neural network Deep learning Image processing Image segmentation Localization Machine learning Medical imaging Neural networks |
title | An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20two-stage%20cascaded%20deep%20neural%20network%20for%20adrenal%20segmentation%20on%20CT%20images&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Luo,%20Guoting&rft.date=2021-09&rft.volume=136&rft.spage=104749&rft.epage=104749&rft.pages=104749-104749&rft.artnum=104749&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104749&rft_dat=%3Cproquest_cross%3E2561487145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570438515&rft_id=info:pmid/&rft_els_id=S0010482521005436&rfr_iscdi=true |