An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images

Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-09, Vol.136, p.104749-104749, Article 104749
Hauptverfasser: Luo, Guoting, Yang, Qing, Chen, Tao, Zheng, Tao, Xie, Wei, Sun, Huaiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104749
container_issue
container_start_page 104749
container_title Computers in biology and medicine
container_volume 136
creator Luo, Guoting
Yang, Qing
Chen, Tao
Zheng, Tao
Xie, Wei
Sun, Huaiqiang
description Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources. •A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.
doi_str_mv 10.1016/j.compbiomed.2021.104749
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561487145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521005436</els_id><sourcerecordid>2561487145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKv_IeDGzdSXTKaTWdbiFxTc1IWrkEnelNTOZExmFP31plQQ3Lh6cDnvwL2EUAYzBmx-vZ0Z3_a18y3aGQfOUixKUR2RCZNllUGRi2MyAWCQCcmLU3IW4xYABOQwIS-Ljvp-cK37QkuHD5_FQW-QGh2NtimyiD3tcAx6l04CwittfKDaBuxSFnHTYjfowflk6uhyTV2bDPGcnDR6F_Hi507J893tevmQrZ7uH5eLVWbyshoyyytpy4IhytqgrLjRteYgGs3N3FpWNxUTUheMFdLWc9bwvAQpdI05NxZMPiVXB28f_NuIcVCtiwZ3O92hH6PixTwJSiaKhF7-Qbd-DKnFnipB5LJge0oeKBN8jAEb1YdUKXwqBmq_udqq383VfnN12Dy93hxeMRV-dxhUNA47g9YFNIOy3v0v-QY8fY_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570438515</pqid></control><display><type>article</type><title>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</title><source>Elsevier ScienceDirect Journals</source><creator>Luo, Guoting ; Yang, Qing ; Chen, Tao ; Zheng, Tao ; Xie, Wei ; Sun, Huaiqiang</creator><creatorcontrib>Luo, Guoting ; Yang, Qing ; Chen, Tao ; Zheng, Tao ; Xie, Wei ; Sun, Huaiqiang</creatorcontrib><description>Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources. •A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104749</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Abdomen ; Accuracy ; Adrenal gland ; Adrenal glands ; Artificial neural networks ; Computed tomography ; Computer applications ; Convolutional neural network ; Deep learning ; Image processing ; Image segmentation ; Localization ; Machine learning ; Medical imaging ; Neural networks</subject><ispartof>Computers in biology and medicine, 2021-09, Vol.136, p.104749-104749, Article 104749</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</citedby><cites>FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</cites><orcidid>0000-0003-0687-6065 ; 0000-0001-6726-0710 ; 0000-0002-8371-779X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482521005436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Luo, Guoting</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Sun, Huaiqiang</creatorcontrib><title>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</title><title>Computers in biology and medicine</title><description>Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources. •A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.</description><subject>Abdomen</subject><subject>Accuracy</subject><subject>Adrenal gland</subject><subject>Adrenal glands</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LAzEURYMoWKv_IeDGzdSXTKaTWdbiFxTc1IWrkEnelNTOZExmFP31plQQ3Lh6cDnvwL2EUAYzBmx-vZ0Z3_a18y3aGQfOUixKUR2RCZNllUGRi2MyAWCQCcmLU3IW4xYABOQwIS-Ljvp-cK37QkuHD5_FQW-QGh2NtimyiD3tcAx6l04CwittfKDaBuxSFnHTYjfowflk6uhyTV2bDPGcnDR6F_Hi507J893tevmQrZ7uH5eLVWbyshoyyytpy4IhytqgrLjRteYgGs3N3FpWNxUTUheMFdLWc9bwvAQpdI05NxZMPiVXB28f_NuIcVCtiwZ3O92hH6PixTwJSiaKhF7-Qbd-DKnFnipB5LJge0oeKBN8jAEb1YdUKXwqBmq_udqq383VfnN12Dy93hxeMRV-dxhUNA47g9YFNIOy3v0v-QY8fY_M</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Luo, Guoting</creator><creator>Yang, Qing</creator><creator>Chen, Tao</creator><creator>Zheng, Tao</creator><creator>Xie, Wei</creator><creator>Sun, Huaiqiang</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0687-6065</orcidid><orcidid>https://orcid.org/0000-0001-6726-0710</orcidid><orcidid>https://orcid.org/0000-0002-8371-779X</orcidid></search><sort><creationdate>202109</creationdate><title>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</title><author>Luo, Guoting ; Yang, Qing ; Chen, Tao ; Zheng, Tao ; Xie, Wei ; Sun, Huaiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d298d751ee8bce892caba204fa2c6dd1bf9148a51158db61f237084abe32cd0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abdomen</topic><topic>Accuracy</topic><topic>Adrenal gland</topic><topic>Adrenal glands</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Guoting</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Zheng, Tao</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Sun, Huaiqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Guoting</au><au>Yang, Qing</au><au>Chen, Tao</au><au>Zheng, Tao</au><au>Xie, Wei</au><au>Sun, Huaiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images</atitle><jtitle>Computers in biology and medicine</jtitle><date>2021-09</date><risdate>2021</risdate><volume>136</volume><spage>104749</spage><epage>104749</epage><pages>104749-104749</pages><artnum>104749</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Segmentation of adrenal glands from CT images is a crucial step in the AI-assisted diagnosis of adrenal gland-related disease. However, highly intrasubject variability in shape and adhesive boundaries with surrounding tissues make accurate segmentation of the adrenal gland a challenging task. In the current study, we proposed a novel two-stage deep neural network for adrenal gland segmentation in an end-to-end fashion. In the first stage, a localization network that aims to determine the candidate volume of the target organ was used in the preprocessing step to reduce class imbalance and computational burden. Then, in the second stage, a Small-organNet model trained with a novel boundary attention focal loss was designed to refine the boundary of the organ within the screened volume. The experimental results show that our proposed cascaded framework outperforms the state-of-the-art deep learning method in segmenting the adrenal gland with respect to accuracy; it requires fewer trainable parameters and imposes a smaller demand on computational resources. •A high performance and low computational demand deep neural network designed for segmentaion of tiny organs from CT.•A novel loss function that focus on boundary was used in model training to solve fuzzy boundaries.•Adrenal dataset with high heterogeniety makes the trained model robust to variations in shape and intensity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2021.104749</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0687-6065</orcidid><orcidid>https://orcid.org/0000-0001-6726-0710</orcidid><orcidid>https://orcid.org/0000-0002-8371-779X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2021-09, Vol.136, p.104749-104749, Article 104749
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2561487145
source Elsevier ScienceDirect Journals
subjects Abdomen
Accuracy
Adrenal gland
Adrenal glands
Artificial neural networks
Computed tomography
Computer applications
Convolutional neural network
Deep learning
Image processing
Image segmentation
Localization
Machine learning
Medical imaging
Neural networks
title An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20two-stage%20cascaded%20deep%20neural%20network%20for%20adrenal%20segmentation%20on%20CT%20images&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Luo,%20Guoting&rft.date=2021-09&rft.volume=136&rft.spage=104749&rft.epage=104749&rft.pages=104749-104749&rft.artnum=104749&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104749&rft_dat=%3Cproquest_cross%3E2561487145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570438515&rft_id=info:pmid/&rft_els_id=S0010482521005436&rfr_iscdi=true