Phenolic extract of Libidibia ferrea inhibits dentin endogenous enzymatic activity depending on the adhesive system strategy
This study evaluated the influence of Libidibia ferrea (Lf) extract used as dentin pretreatment on the resin–dentin bond strength stability and dentin endogenous enzymatic activity. The phytochemical profile (PP) of the Lf extract was evaluated by liquid chromatography; particle size, polydispersity...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2022-01, Vol.85 (1), p.270-282 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 1 |
container_start_page | 270 |
container_title | Microscopy research and technique |
container_volume | 85 |
creator | Venâncio, Gisely Naura Bridi, Enrico Coser Teixeira, Lucas Novaes Basting, Rosanna Tarkany Sousa, Ilza Maria de Oliveira França, Fabiana Mantovani Gomes Amaral, Flávia Lucisano Botelho Turssi, Cecilia Pedroso Basting, Roberta Tarkany |
description | This study evaluated the influence of Libidibia ferrea (Lf) extract used as dentin pretreatment on the resin–dentin bond strength stability and dentin endogenous enzymatic activity. The phytochemical profile (PP) of the Lf extract was evaluated by liquid chromatography; particle size, polydispersity index (PdI), and zeta potential (ZP) were evaluated by dynamic light scattering. The tested groups were ER—Scotchbond Universal (SBU) in the etch‐and‐rinse (ER) mode; ERLf—SBU in the ER mode + Lf after etching; SE— SBU in the self‐etch (SE) mode; and LfSE—Lf before SBU in the SE mode. Sticks were obtained for microtensile bond strength tests and failure mode (24 hr and 12 months). The hybrid layer was evaluated using scanning electron microscopy. The endogenous enzymatic activity of the underlying dentin was analyzed by in situ zymography with the same treatments. The PP showed the presence of quercetin (2.6% w/w). Lf particles were considered large after the analysis of the PdI. The ZP remained stable over time. The ER and ERLf groups had lower bond strength after 12 months, but SE and LfSE remained stable. The predominant failure mode was adhesive for both times. ER and ERLf had longer resin tags and a thicker hybrid layer. The ER and LfSE groups showed higher enzymatic activity than the ERLf and SE groups after 12 months. The Lf extract may contribute to inhibit the dentin endogenous enzymatic activity when associated with an adhesive system in the ER mode.
Research highlights
Lf extract did not influence bond strength regardless of the adhesive system strategy.
Lf extract can inhibit the endogenous enzymatic activity of dentin.
Depending on the bonding strategy, Lf extract influenced the enzymatic activity of dentin. |
doi_str_mv | 10.1002/jemt.23902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2561484944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561484944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3162-bfe016d3d7e19c76d306213a909b237772920450d71bb72cf3bb1096942e9373</originalsourceid><addsrcrecordid>eNp9kU-PFCEQxYnRuOvqxQ9gSLwYk14poJvlaDbrv4zRwxy8Ebq7eoZJNz0Cs9rGD2-Ns3rw4IHwIL96VPEYewriEoSQr3Y4lUuprJD32DkIayq6tfePuraVBfHljD3KeScEQA36ITtTWl011ppz9vPzFuM8ho7j95J8V_g88FVoQ0_L8wFTQs9D3NKxZN5jLCFyjP28obpDJvljmXwhAyoOt6EsBO0JCHHD58jLFrnvt5jDLfK85IITz_RSwc3ymD0Y_Jjxyd1-wdZvbtbX76rVp7fvr1-vqk5BI6t2QAFNr3qDYDtDSjQSlLfCtlIZY6SVQteiN9C2RnaDalv6hsZqiVYZdcFenGz3af56wFzcFHKH4-gj0ghO1g3oK221JvT5P-huPqRIzTnZgFS1lBqIenmiujTnnHBw-xQmnxYHwh0jccdI3O9ICH52Z3loJ-z_on8yIABOwLcw4vIfK_fh5uP6ZPoLKsuXeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612352241</pqid></control><display><type>article</type><title>Phenolic extract of Libidibia ferrea inhibits dentin endogenous enzymatic activity depending on the adhesive system strategy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Venâncio, Gisely Naura ; Bridi, Enrico Coser ; Teixeira, Lucas Novaes ; Basting, Rosanna Tarkany ; Sousa, Ilza Maria de Oliveira ; França, Fabiana Mantovani Gomes ; Amaral, Flávia Lucisano Botelho ; Turssi, Cecilia Pedroso ; Basting, Roberta Tarkany</creator><creatorcontrib>Venâncio, Gisely Naura ; Bridi, Enrico Coser ; Teixeira, Lucas Novaes ; Basting, Rosanna Tarkany ; Sousa, Ilza Maria de Oliveira ; França, Fabiana Mantovani Gomes ; Amaral, Flávia Lucisano Botelho ; Turssi, Cecilia Pedroso ; Basting, Roberta Tarkany</creatorcontrib><description>This study evaluated the influence of Libidibia ferrea (Lf) extract used as dentin pretreatment on the resin–dentin bond strength stability and dentin endogenous enzymatic activity. The phytochemical profile (PP) of the Lf extract was evaluated by liquid chromatography; particle size, polydispersity index (PdI), and zeta potential (ZP) were evaluated by dynamic light scattering. The tested groups were ER—Scotchbond Universal (SBU) in the etch‐and‐rinse (ER) mode; ERLf—SBU in the ER mode + Lf after etching; SE— SBU in the self‐etch (SE) mode; and LfSE—Lf before SBU in the SE mode. Sticks were obtained for microtensile bond strength tests and failure mode (24 hr and 12 months). The hybrid layer was evaluated using scanning electron microscopy. The endogenous enzymatic activity of the underlying dentin was analyzed by in situ zymography with the same treatments. The PP showed the presence of quercetin (2.6% w/w). Lf particles were considered large after the analysis of the PdI. The ZP remained stable over time. The ER and ERLf groups had lower bond strength after 12 months, but SE and LfSE remained stable. The predominant failure mode was adhesive for both times. ER and ERLf had longer resin tags and a thicker hybrid layer. The ER and LfSE groups showed higher enzymatic activity than the ERLf and SE groups after 12 months. The Lf extract may contribute to inhibit the dentin endogenous enzymatic activity when associated with an adhesive system in the ER mode.
Research highlights
Lf extract did not influence bond strength regardless of the adhesive system strategy.
Lf extract can inhibit the endogenous enzymatic activity of dentin.
Depending on the bonding strategy, Lf extract influenced the enzymatic activity of dentin.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23902</identifier><identifier>PMID: 34386997</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>adhesive system ; Adhesives ; bonding ; Bonding strength ; Composite Resins ; Dental Bonding ; Dental Cements ; Dentin ; Dentin-Bonding Agents ; Enzymatic activity ; Etching ; Failure modes ; Libidibia ferrea ; Light scattering ; Liquid chromatography ; Materials Testing ; matrix metalloproteinases ; Phenolic compounds ; Phenols ; Photon correlation spectroscopy ; Plant Extracts - pharmacology ; Polydispersity ; Quercetin ; Resin Cements ; Resins ; Scanning electron microscopy ; Tensile Strength ; Zeta potential</subject><ispartof>Microscopy research and technique, 2022-01, Vol.85 (1), p.270-282</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3162-bfe016d3d7e19c76d306213a909b237772920450d71bb72cf3bb1096942e9373</cites><orcidid>0000-0001-7231-4680 ; 0000-0003-3633-9631 ; 0000-0002-5345-5776 ; 0000-0001-9756-140X ; 0000-0001-8687-6123 ; 0000-0002-1675-0944 ; 0000-0002-3956-3199 ; 0000-0001-6375-1440 ; 0000-0002-0078-9895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23902$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23902$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34386997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venâncio, Gisely Naura</creatorcontrib><creatorcontrib>Bridi, Enrico Coser</creatorcontrib><creatorcontrib>Teixeira, Lucas Novaes</creatorcontrib><creatorcontrib>Basting, Rosanna Tarkany</creatorcontrib><creatorcontrib>Sousa, Ilza Maria de Oliveira</creatorcontrib><creatorcontrib>França, Fabiana Mantovani Gomes</creatorcontrib><creatorcontrib>Amaral, Flávia Lucisano Botelho</creatorcontrib><creatorcontrib>Turssi, Cecilia Pedroso</creatorcontrib><creatorcontrib>Basting, Roberta Tarkany</creatorcontrib><title>Phenolic extract of Libidibia ferrea inhibits dentin endogenous enzymatic activity depending on the adhesive system strategy</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>This study evaluated the influence of Libidibia ferrea (Lf) extract used as dentin pretreatment on the resin–dentin bond strength stability and dentin endogenous enzymatic activity. The phytochemical profile (PP) of the Lf extract was evaluated by liquid chromatography; particle size, polydispersity index (PdI), and zeta potential (ZP) were evaluated by dynamic light scattering. The tested groups were ER—Scotchbond Universal (SBU) in the etch‐and‐rinse (ER) mode; ERLf—SBU in the ER mode + Lf after etching; SE— SBU in the self‐etch (SE) mode; and LfSE—Lf before SBU in the SE mode. Sticks were obtained for microtensile bond strength tests and failure mode (24 hr and 12 months). The hybrid layer was evaluated using scanning electron microscopy. The endogenous enzymatic activity of the underlying dentin was analyzed by in situ zymography with the same treatments. The PP showed the presence of quercetin (2.6% w/w). Lf particles were considered large after the analysis of the PdI. The ZP remained stable over time. The ER and ERLf groups had lower bond strength after 12 months, but SE and LfSE remained stable. The predominant failure mode was adhesive for both times. ER and ERLf had longer resin tags and a thicker hybrid layer. The ER and LfSE groups showed higher enzymatic activity than the ERLf and SE groups after 12 months. The Lf extract may contribute to inhibit the dentin endogenous enzymatic activity when associated with an adhesive system in the ER mode.
Research highlights
Lf extract did not influence bond strength regardless of the adhesive system strategy.
Lf extract can inhibit the endogenous enzymatic activity of dentin.
Depending on the bonding strategy, Lf extract influenced the enzymatic activity of dentin.</description><subject>adhesive system</subject><subject>Adhesives</subject><subject>bonding</subject><subject>Bonding strength</subject><subject>Composite Resins</subject><subject>Dental Bonding</subject><subject>Dental Cements</subject><subject>Dentin</subject><subject>Dentin-Bonding Agents</subject><subject>Enzymatic activity</subject><subject>Etching</subject><subject>Failure modes</subject><subject>Libidibia ferrea</subject><subject>Light scattering</subject><subject>Liquid chromatography</subject><subject>Materials Testing</subject><subject>matrix metalloproteinases</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Photon correlation spectroscopy</subject><subject>Plant Extracts - pharmacology</subject><subject>Polydispersity</subject><subject>Quercetin</subject><subject>Resin Cements</subject><subject>Resins</subject><subject>Scanning electron microscopy</subject><subject>Tensile Strength</subject><subject>Zeta potential</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-PFCEQxYnRuOvqxQ9gSLwYk14poJvlaDbrv4zRwxy8Ebq7eoZJNz0Cs9rGD2-Ns3rw4IHwIL96VPEYewriEoSQr3Y4lUuprJD32DkIayq6tfePuraVBfHljD3KeScEQA36ITtTWl011ppz9vPzFuM8ho7j95J8V_g88FVoQ0_L8wFTQs9D3NKxZN5jLCFyjP28obpDJvljmXwhAyoOt6EsBO0JCHHD58jLFrnvt5jDLfK85IITz_RSwc3ymD0Y_Jjxyd1-wdZvbtbX76rVp7fvr1-vqk5BI6t2QAFNr3qDYDtDSjQSlLfCtlIZY6SVQteiN9C2RnaDalv6hsZqiVYZdcFenGz3af56wFzcFHKH4-gj0ghO1g3oK221JvT5P-huPqRIzTnZgFS1lBqIenmiujTnnHBw-xQmnxYHwh0jccdI3O9ICH52Z3loJ-z_on8yIABOwLcw4vIfK_fh5uP6ZPoLKsuXeg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Venâncio, Gisely Naura</creator><creator>Bridi, Enrico Coser</creator><creator>Teixeira, Lucas Novaes</creator><creator>Basting, Rosanna Tarkany</creator><creator>Sousa, Ilza Maria de Oliveira</creator><creator>França, Fabiana Mantovani Gomes</creator><creator>Amaral, Flávia Lucisano Botelho</creator><creator>Turssi, Cecilia Pedroso</creator><creator>Basting, Roberta Tarkany</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7231-4680</orcidid><orcidid>https://orcid.org/0000-0003-3633-9631</orcidid><orcidid>https://orcid.org/0000-0002-5345-5776</orcidid><orcidid>https://orcid.org/0000-0001-9756-140X</orcidid><orcidid>https://orcid.org/0000-0001-8687-6123</orcidid><orcidid>https://orcid.org/0000-0002-1675-0944</orcidid><orcidid>https://orcid.org/0000-0002-3956-3199</orcidid><orcidid>https://orcid.org/0000-0001-6375-1440</orcidid><orcidid>https://orcid.org/0000-0002-0078-9895</orcidid></search><sort><creationdate>202201</creationdate><title>Phenolic extract of Libidibia ferrea inhibits dentin endogenous enzymatic activity depending on the adhesive system strategy</title><author>Venâncio, Gisely Naura ; Bridi, Enrico Coser ; Teixeira, Lucas Novaes ; Basting, Rosanna Tarkany ; Sousa, Ilza Maria de Oliveira ; França, Fabiana Mantovani Gomes ; Amaral, Flávia Lucisano Botelho ; Turssi, Cecilia Pedroso ; Basting, Roberta Tarkany</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3162-bfe016d3d7e19c76d306213a909b237772920450d71bb72cf3bb1096942e9373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adhesive system</topic><topic>Adhesives</topic><topic>bonding</topic><topic>Bonding strength</topic><topic>Composite Resins</topic><topic>Dental Bonding</topic><topic>Dental Cements</topic><topic>Dentin</topic><topic>Dentin-Bonding Agents</topic><topic>Enzymatic activity</topic><topic>Etching</topic><topic>Failure modes</topic><topic>Libidibia ferrea</topic><topic>Light scattering</topic><topic>Liquid chromatography</topic><topic>Materials Testing</topic><topic>matrix metalloproteinases</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Photon correlation spectroscopy</topic><topic>Plant Extracts - pharmacology</topic><topic>Polydispersity</topic><topic>Quercetin</topic><topic>Resin Cements</topic><topic>Resins</topic><topic>Scanning electron microscopy</topic><topic>Tensile Strength</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venâncio, Gisely Naura</creatorcontrib><creatorcontrib>Bridi, Enrico Coser</creatorcontrib><creatorcontrib>Teixeira, Lucas Novaes</creatorcontrib><creatorcontrib>Basting, Rosanna Tarkany</creatorcontrib><creatorcontrib>Sousa, Ilza Maria de Oliveira</creatorcontrib><creatorcontrib>França, Fabiana Mantovani Gomes</creatorcontrib><creatorcontrib>Amaral, Flávia Lucisano Botelho</creatorcontrib><creatorcontrib>Turssi, Cecilia Pedroso</creatorcontrib><creatorcontrib>Basting, Roberta Tarkany</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venâncio, Gisely Naura</au><au>Bridi, Enrico Coser</au><au>Teixeira, Lucas Novaes</au><au>Basting, Rosanna Tarkany</au><au>Sousa, Ilza Maria de Oliveira</au><au>França, Fabiana Mantovani Gomes</au><au>Amaral, Flávia Lucisano Botelho</au><au>Turssi, Cecilia Pedroso</au><au>Basting, Roberta Tarkany</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenolic extract of Libidibia ferrea inhibits dentin endogenous enzymatic activity depending on the adhesive system strategy</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2022-01</date><risdate>2022</risdate><volume>85</volume><issue>1</issue><spage>270</spage><epage>282</epage><pages>270-282</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>This study evaluated the influence of Libidibia ferrea (Lf) extract used as dentin pretreatment on the resin–dentin bond strength stability and dentin endogenous enzymatic activity. The phytochemical profile (PP) of the Lf extract was evaluated by liquid chromatography; particle size, polydispersity index (PdI), and zeta potential (ZP) were evaluated by dynamic light scattering. The tested groups were ER—Scotchbond Universal (SBU) in the etch‐and‐rinse (ER) mode; ERLf—SBU in the ER mode + Lf after etching; SE— SBU in the self‐etch (SE) mode; and LfSE—Lf before SBU in the SE mode. Sticks were obtained for microtensile bond strength tests and failure mode (24 hr and 12 months). The hybrid layer was evaluated using scanning electron microscopy. The endogenous enzymatic activity of the underlying dentin was analyzed by in situ zymography with the same treatments. The PP showed the presence of quercetin (2.6% w/w). Lf particles were considered large after the analysis of the PdI. The ZP remained stable over time. The ER and ERLf groups had lower bond strength after 12 months, but SE and LfSE remained stable. The predominant failure mode was adhesive for both times. ER and ERLf had longer resin tags and a thicker hybrid layer. The ER and LfSE groups showed higher enzymatic activity than the ERLf and SE groups after 12 months. The Lf extract may contribute to inhibit the dentin endogenous enzymatic activity when associated with an adhesive system in the ER mode.
Research highlights
Lf extract did not influence bond strength regardless of the adhesive system strategy.
Lf extract can inhibit the endogenous enzymatic activity of dentin.
Depending on the bonding strategy, Lf extract influenced the enzymatic activity of dentin.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34386997</pmid><doi>10.1002/jemt.23902</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7231-4680</orcidid><orcidid>https://orcid.org/0000-0003-3633-9631</orcidid><orcidid>https://orcid.org/0000-0002-5345-5776</orcidid><orcidid>https://orcid.org/0000-0001-9756-140X</orcidid><orcidid>https://orcid.org/0000-0001-8687-6123</orcidid><orcidid>https://orcid.org/0000-0002-1675-0944</orcidid><orcidid>https://orcid.org/0000-0002-3956-3199</orcidid><orcidid>https://orcid.org/0000-0001-6375-1440</orcidid><orcidid>https://orcid.org/0000-0002-0078-9895</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2022-01, Vol.85 (1), p.270-282 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_2561484944 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | adhesive system Adhesives bonding Bonding strength Composite Resins Dental Bonding Dental Cements Dentin Dentin-Bonding Agents Enzymatic activity Etching Failure modes Libidibia ferrea Light scattering Liquid chromatography Materials Testing matrix metalloproteinases Phenolic compounds Phenols Photon correlation spectroscopy Plant Extracts - pharmacology Polydispersity Quercetin Resin Cements Resins Scanning electron microscopy Tensile Strength Zeta potential |
title | Phenolic extract of Libidibia ferrea inhibits dentin endogenous enzymatic activity depending on the adhesive system strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenolic%20extract%20of%20Libidibia%20ferrea%20inhibits%20dentin%20endogenous%20enzymatic%20activity%20depending%20on%20the%20adhesive%20system%20strategy&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Ven%C3%A2ncio,%20Gisely%20Naura&rft.date=2022-01&rft.volume=85&rft.issue=1&rft.spage=270&rft.epage=282&rft.pages=270-282&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23902&rft_dat=%3Cproquest_cross%3E2561484944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612352241&rft_id=info:pmid/34386997&rfr_iscdi=true |