A design methodology for vertical channel flow and heat transfer

A design method based on a known inlet temperature and pressure drop across a system of finite-length vertical parallel plate channels is presented. This method spans the entire spectrum of pure free convection through mixed convection up to forced convection and includes radiation heat transfer. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hawkins, L.E., Nelson, D.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 15
container_title
container_volume
creator Hawkins, L.E.
Nelson, D.J.
description A design method based on a known inlet temperature and pressure drop across a system of finite-length vertical parallel plate channels is presented. This method spans the entire spectrum of pure free convection through mixed convection up to forced convection and includes radiation heat transfer. The solution method is based on solving the full 2-D transient laminar Navier-Stokes and energy equations using a penalty finite-element method. Results for an asymmetrically heated channel provide a convenient parameter for determining when the flow is forced- or free-convection dominated and demonstrate the significant contribution of radiant energy transfer in air-cooled systems. The methodology is applicable to a wide range of design problems in the cooling of electronic systems.< >
doi_str_mv 10.1109/ITHERM.1992.187736
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25608814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>187736</ieee_id><sourcerecordid>25608814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-ef1de2c45ebbb251138e839bff2ba866bb8c63f6f44d01a1f40187070310bff53</originalsourceid><addsrcrecordid>eNotkF1LwzAYhQMiKLN_YFe58q41b9KP9M4xphtMBJnXJWnfrJW0mUmm7N9bmIcD5-bhwDmELIFlAKx-2h22m4-3DOqaZyCrSpQ3JKkryWYLVjAh70gSwheblRfAOdyT5xXtMAzHiY4Ye9c5644XapynP-jj0CpL215NE1pqrPulaupojyrS6NUUDPoHcmuUDZj854J8vmwO6226f3_drVf7dACQMUUDHfI2L1BrzQsAIVGKWhvDtZJlqbVsS2FKk-cdAwUmZ_MEVjEBbIYKsSCP196Td99nDLEZh9CitWpCdw4NL0omJeQzuLyCAyI2Jz-Myl-a6x_iD6LpVgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>25608814</pqid></control><display><type>conference_proceeding</type><title>A design methodology for vertical channel flow and heat transfer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hawkins, L.E. ; Nelson, D.J.</creator><creatorcontrib>Hawkins, L.E. ; Nelson, D.J.</creatorcontrib><description>A design method based on a known inlet temperature and pressure drop across a system of finite-length vertical parallel plate channels is presented. This method spans the entire spectrum of pure free convection through mixed convection up to forced convection and includes radiation heat transfer. The solution method is based on solving the full 2-D transient laminar Navier-Stokes and energy equations using a penalty finite-element method. Results for an asymmetrically heated channel provide a convenient parameter for determining when the flow is forced- or free-convection dominated and demonstrate the significant contribution of radiant energy transfer in air-cooled systems. The methodology is applicable to a wide range of design problems in the cooling of electronic systems.&lt; &gt;</description><identifier>ISBN: 9780780305038</identifier><identifier>ISBN: 0780305035</identifier><identifier>DOI: 10.1109/ITHERM.1992.187736</identifier><language>eng</language><publisher>IEEE</publisher><subject>Design methodology ; Differential equations ; Heat transfer ; Mechanical engineering ; Navier-Stokes equations ; Partial differential equations ; Temperature ; Thermal conductivity ; Thermal expansion ; Thermal force</subject><ispartof>Intersociety Conference on Thermal Phenomena in Electronic Systems, 1992, p.15-22</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/187736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,4036,4037,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/187736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hawkins, L.E.</creatorcontrib><creatorcontrib>Nelson, D.J.</creatorcontrib><title>A design methodology for vertical channel flow and heat transfer</title><title>Intersociety Conference on Thermal Phenomena in Electronic Systems</title><addtitle>ITHERM</addtitle><description>A design method based on a known inlet temperature and pressure drop across a system of finite-length vertical parallel plate channels is presented. This method spans the entire spectrum of pure free convection through mixed convection up to forced convection and includes radiation heat transfer. The solution method is based on solving the full 2-D transient laminar Navier-Stokes and energy equations using a penalty finite-element method. Results for an asymmetrically heated channel provide a convenient parameter for determining when the flow is forced- or free-convection dominated and demonstrate the significant contribution of radiant energy transfer in air-cooled systems. The methodology is applicable to a wide range of design problems in the cooling of electronic systems.&lt; &gt;</description><subject>Design methodology</subject><subject>Differential equations</subject><subject>Heat transfer</subject><subject>Mechanical engineering</subject><subject>Navier-Stokes equations</subject><subject>Partial differential equations</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal force</subject><isbn>9780780305038</isbn><isbn>0780305035</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkF1LwzAYhQMiKLN_YFe58q41b9KP9M4xphtMBJnXJWnfrJW0mUmm7N9bmIcD5-bhwDmELIFlAKx-2h22m4-3DOqaZyCrSpQ3JKkryWYLVjAh70gSwheblRfAOdyT5xXtMAzHiY4Ye9c5644XapynP-jj0CpL215NE1pqrPulaupojyrS6NUUDPoHcmuUDZj854J8vmwO6226f3_drVf7dACQMUUDHfI2L1BrzQsAIVGKWhvDtZJlqbVsS2FKk-cdAwUmZ_MEVjEBbIYKsSCP196Td99nDLEZh9CitWpCdw4NL0omJeQzuLyCAyI2Jz-Myl-a6x_iD6LpVgQ</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Hawkins, L.E.</creator><creator>Nelson, D.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1992</creationdate><title>A design methodology for vertical channel flow and heat transfer</title><author>Hawkins, L.E. ; Nelson, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-ef1de2c45ebbb251138e839bff2ba866bb8c63f6f44d01a1f40187070310bff53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Design methodology</topic><topic>Differential equations</topic><topic>Heat transfer</topic><topic>Mechanical engineering</topic><topic>Navier-Stokes equations</topic><topic>Partial differential equations</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal force</topic><toplevel>online_resources</toplevel><creatorcontrib>Hawkins, L.E.</creatorcontrib><creatorcontrib>Nelson, D.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hawkins, L.E.</au><au>Nelson, D.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A design methodology for vertical channel flow and heat transfer</atitle><btitle>Intersociety Conference on Thermal Phenomena in Electronic Systems</btitle><stitle>ITHERM</stitle><date>1992</date><risdate>1992</risdate><spage>15</spage><epage>22</epage><pages>15-22</pages><isbn>9780780305038</isbn><isbn>0780305035</isbn><abstract>A design method based on a known inlet temperature and pressure drop across a system of finite-length vertical parallel plate channels is presented. This method spans the entire spectrum of pure free convection through mixed convection up to forced convection and includes radiation heat transfer. The solution method is based on solving the full 2-D transient laminar Navier-Stokes and energy equations using a penalty finite-element method. Results for an asymmetrically heated channel provide a convenient parameter for determining when the flow is forced- or free-convection dominated and demonstrate the significant contribution of radiant energy transfer in air-cooled systems. The methodology is applicable to a wide range of design problems in the cooling of electronic systems.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ITHERM.1992.187736</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780305038
ispartof Intersociety Conference on Thermal Phenomena in Electronic Systems, 1992, p.15-22
issn
language eng
recordid cdi_proquest_miscellaneous_25608814
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Design methodology
Differential equations
Heat transfer
Mechanical engineering
Navier-Stokes equations
Partial differential equations
Temperature
Thermal conductivity
Thermal expansion
Thermal force
title A design methodology for vertical channel flow and heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20design%20methodology%20for%20vertical%20channel%20flow%20and%20heat%20transfer&rft.btitle=Intersociety%20Conference%20on%20Thermal%20Phenomena%20in%20Electronic%20Systems&rft.au=Hawkins,%20L.E.&rft.date=1992&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.isbn=9780780305038&rft.isbn_list=0780305035&rft_id=info:doi/10.1109/ITHERM.1992.187736&rft_dat=%3Cproquest_6IE%3E25608814%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25608814&rft_id=info:pmid/&rft_ieee_id=187736&rfr_iscdi=true