Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging

Fluorescence imaging in living cells is key to understanding many biological processes, yet autofluorescence from the sample can lower sensitivity and hinder high-resolution imaging. Time-gated measurements using phosphorescent metal complexes can improve imaging, at the cost of potential toxicity f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-08, Vol.143 (33), p.13342-13349
Hauptverfasser: Christopherson, Cheyenne J, Paisley, Nathan R, Xiao, Zhujun, Algar, W. Russ, Hudson, Zachary M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13349
container_issue 33
container_start_page 13342
container_title Journal of the American Chemical Society
container_volume 143
creator Christopherson, Cheyenne J
Paisley, Nathan R
Xiao, Zhujun
Algar, W. Russ
Hudson, Zachary M
description Fluorescence imaging in living cells is key to understanding many biological processes, yet autofluorescence from the sample can lower sensitivity and hinder high-resolution imaging. Time-gated measurements using phosphorescent metal complexes can improve imaging, at the cost of potential toxicity from the use of heavy metals. Here, we describe orange/red-emitting polymer dots (Pdots) exhibiting thermally activated delayed fluorescence (TADF) for time-gated imaging. Inspired by the cell invasion mechanism of the HIV TAT protein, the Pdots were formed from block copolymers composed of a hydrophilic guanidine-rich block as a cell-penetrating peptide mimic, and a rigid organic semiconductor block to provide efficient delayed fluorescence. These all-organic polymer nanoparticles were shown to efficiently enter HeLa, CHO, and HepG2 cells within 30 min, with cell viabilities remaining high for Pdot concentrations up to 25 mg mL–1. Pdot quantum yields were as high as 0.17 in aerated water, with the Pdot structure effectively shielding the TADF emitters from quenching by oxygen. Colocalization experiments revealed that the Pdots primarily accumulate outside of lysosomes, minimizing lysosomal degradation. When used for fixed cellular imaging, Pdot-incubated cells showed high signal-to-background ratios compared to control samples with no Pdot exposure. Using time-resolved spectroscopy, the delayed emission of the TADF materials was effectively separated from that of both a biological serum and a secondary fluorescent dye.
doi_str_mv 10.1021/jacs.1c06290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2560837036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560837036</sourcerecordid><originalsourceid>FETCH-LOGICAL-a254t-f10b37787839d639cd8af423af754e5470314aeeec769e8f15a3e6c8816c31fe3</originalsourceid><addsrcrecordid>eNptkElPwzAQhS0EoqVw44xy5ECKl8R2j1UXqFSJCpVz5DqTNpWTFDupyL_HXYALp9GM3nwz7yF0T3CfYEqet0q7PtGY0wG-QF0SUxzGhPJL1MUY01BIzjroxrmtbyMqyTXqsIhJKkTcRe4d0nBS5M7lewhGYEy4gBJqq-q8XAeLyrQF2GBc1S6YfG3yVX6cLzdgC2VMGwx1ne9VDWkwBqNaX6emqSw4DaWGIKvskdoYZYNZodZ--xZdZco4uDvXHvqYTpaj13D-9jIbDeehonFUhxnBKyaEFJINUs4GOpUqiyhTmYgjiCOBGYkUAGjBByAzEisGXEtJuGYkA9ZDjyfuzlafDbg68T61f0aVUDUuoTHHknkM99Knk1TbyjkLWbKzeaFsmxCcHGJODjEn55i9_OFMblYFpL_in1z_Th-2tlVjS2_0f9Y3ez2G9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560837036</pqid></control><display><type>article</type><title>Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Christopherson, Cheyenne J ; Paisley, Nathan R ; Xiao, Zhujun ; Algar, W. Russ ; Hudson, Zachary M</creator><creatorcontrib>Christopherson, Cheyenne J ; Paisley, Nathan R ; Xiao, Zhujun ; Algar, W. Russ ; Hudson, Zachary M</creatorcontrib><description>Fluorescence imaging in living cells is key to understanding many biological processes, yet autofluorescence from the sample can lower sensitivity and hinder high-resolution imaging. Time-gated measurements using phosphorescent metal complexes can improve imaging, at the cost of potential toxicity from the use of heavy metals. Here, we describe orange/red-emitting polymer dots (Pdots) exhibiting thermally activated delayed fluorescence (TADF) for time-gated imaging. Inspired by the cell invasion mechanism of the HIV TAT protein, the Pdots were formed from block copolymers composed of a hydrophilic guanidine-rich block as a cell-penetrating peptide mimic, and a rigid organic semiconductor block to provide efficient delayed fluorescence. These all-organic polymer nanoparticles were shown to efficiently enter HeLa, CHO, and HepG2 cells within 30 min, with cell viabilities remaining high for Pdot concentrations up to 25 mg mL–1. Pdot quantum yields were as high as 0.17 in aerated water, with the Pdot structure effectively shielding the TADF emitters from quenching by oxygen. Colocalization experiments revealed that the Pdots primarily accumulate outside of lysosomes, minimizing lysosomal degradation. When used for fixed cellular imaging, Pdot-incubated cells showed high signal-to-background ratios compared to control samples with no Pdot exposure. Using time-resolved spectroscopy, the delayed emission of the TADF materials was effectively separated from that of both a biological serum and a secondary fluorescent dye.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c06290</identifier><identifier>PMID: 34382775</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; CHO Cells ; Cricetulus ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; HeLa Cells ; Hep G2 Cells ; Humans ; Lysosomes - chemistry ; Lysosomes - metabolism ; Molecular Structure ; Optical Imaging ; Polymers - chemistry ; Polymers - metabolism ; Temperature</subject><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (33), p.13342-13349</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a254t-f10b37787839d639cd8af423af754e5470314aeeec769e8f15a3e6c8816c31fe3</citedby><cites>FETCH-LOGICAL-a254t-f10b37787839d639cd8af423af754e5470314aeeec769e8f15a3e6c8816c31fe3</cites><orcidid>0000-0003-3442-7072 ; 0000-0002-8033-4136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c06290$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c06290$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34382775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christopherson, Cheyenne J</creatorcontrib><creatorcontrib>Paisley, Nathan R</creatorcontrib><creatorcontrib>Xiao, Zhujun</creatorcontrib><creatorcontrib>Algar, W. Russ</creatorcontrib><creatorcontrib>Hudson, Zachary M</creatorcontrib><title>Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Fluorescence imaging in living cells is key to understanding many biological processes, yet autofluorescence from the sample can lower sensitivity and hinder high-resolution imaging. Time-gated measurements using phosphorescent metal complexes can improve imaging, at the cost of potential toxicity from the use of heavy metals. Here, we describe orange/red-emitting polymer dots (Pdots) exhibiting thermally activated delayed fluorescence (TADF) for time-gated imaging. Inspired by the cell invasion mechanism of the HIV TAT protein, the Pdots were formed from block copolymers composed of a hydrophilic guanidine-rich block as a cell-penetrating peptide mimic, and a rigid organic semiconductor block to provide efficient delayed fluorescence. These all-organic polymer nanoparticles were shown to efficiently enter HeLa, CHO, and HepG2 cells within 30 min, with cell viabilities remaining high for Pdot concentrations up to 25 mg mL–1. Pdot quantum yields were as high as 0.17 in aerated water, with the Pdot structure effectively shielding the TADF emitters from quenching by oxygen. Colocalization experiments revealed that the Pdots primarily accumulate outside of lysosomes, minimizing lysosomal degradation. When used for fixed cellular imaging, Pdot-incubated cells showed high signal-to-background ratios compared to control samples with no Pdot exposure. Using time-resolved spectroscopy, the delayed emission of the TADF materials was effectively separated from that of both a biological serum and a secondary fluorescent dye.</description><subject>Animals</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>HeLa Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Lysosomes - chemistry</subject><subject>Lysosomes - metabolism</subject><subject>Molecular Structure</subject><subject>Optical Imaging</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Temperature</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkElPwzAQhS0EoqVw44xy5ECKl8R2j1UXqFSJCpVz5DqTNpWTFDupyL_HXYALp9GM3nwz7yF0T3CfYEqet0q7PtGY0wG-QF0SUxzGhPJL1MUY01BIzjroxrmtbyMqyTXqsIhJKkTcRe4d0nBS5M7lewhGYEy4gBJqq-q8XAeLyrQF2GBc1S6YfG3yVX6cLzdgC2VMGwx1ne9VDWkwBqNaX6emqSw4DaWGIKvskdoYZYNZodZ--xZdZco4uDvXHvqYTpaj13D-9jIbDeehonFUhxnBKyaEFJINUs4GOpUqiyhTmYgjiCOBGYkUAGjBByAzEisGXEtJuGYkA9ZDjyfuzlafDbg68T61f0aVUDUuoTHHknkM99Knk1TbyjkLWbKzeaFsmxCcHGJODjEn55i9_OFMblYFpL_in1z_Th-2tlVjS2_0f9Y3ez2G9A</recordid><startdate>20210825</startdate><enddate>20210825</enddate><creator>Christopherson, Cheyenne J</creator><creator>Paisley, Nathan R</creator><creator>Xiao, Zhujun</creator><creator>Algar, W. Russ</creator><creator>Hudson, Zachary M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3442-7072</orcidid><orcidid>https://orcid.org/0000-0002-8033-4136</orcidid></search><sort><creationdate>20210825</creationdate><title>Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging</title><author>Christopherson, Cheyenne J ; Paisley, Nathan R ; Xiao, Zhujun ; Algar, W. Russ ; Hudson, Zachary M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a254t-f10b37787839d639cd8af423af754e5470314aeeec769e8f15a3e6c8816c31fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>HeLa Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Lysosomes - chemistry</topic><topic>Lysosomes - metabolism</topic><topic>Molecular Structure</topic><topic>Optical Imaging</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christopherson, Cheyenne J</creatorcontrib><creatorcontrib>Paisley, Nathan R</creatorcontrib><creatorcontrib>Xiao, Zhujun</creatorcontrib><creatorcontrib>Algar, W. Russ</creatorcontrib><creatorcontrib>Hudson, Zachary M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christopherson, Cheyenne J</au><au>Paisley, Nathan R</au><au>Xiao, Zhujun</au><au>Algar, W. Russ</au><au>Hudson, Zachary M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-25</date><risdate>2021</risdate><volume>143</volume><issue>33</issue><spage>13342</spage><epage>13349</epage><pages>13342-13349</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Fluorescence imaging in living cells is key to understanding many biological processes, yet autofluorescence from the sample can lower sensitivity and hinder high-resolution imaging. Time-gated measurements using phosphorescent metal complexes can improve imaging, at the cost of potential toxicity from the use of heavy metals. Here, we describe orange/red-emitting polymer dots (Pdots) exhibiting thermally activated delayed fluorescence (TADF) for time-gated imaging. Inspired by the cell invasion mechanism of the HIV TAT protein, the Pdots were formed from block copolymers composed of a hydrophilic guanidine-rich block as a cell-penetrating peptide mimic, and a rigid organic semiconductor block to provide efficient delayed fluorescence. These all-organic polymer nanoparticles were shown to efficiently enter HeLa, CHO, and HepG2 cells within 30 min, with cell viabilities remaining high for Pdot concentrations up to 25 mg mL–1. Pdot quantum yields were as high as 0.17 in aerated water, with the Pdot structure effectively shielding the TADF emitters from quenching by oxygen. Colocalization experiments revealed that the Pdots primarily accumulate outside of lysosomes, minimizing lysosomal degradation. When used for fixed cellular imaging, Pdot-incubated cells showed high signal-to-background ratios compared to control samples with no Pdot exposure. Using time-resolved spectroscopy, the delayed emission of the TADF materials was effectively separated from that of both a biological serum and a secondary fluorescent dye.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34382775</pmid><doi>10.1021/jacs.1c06290</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3442-7072</orcidid><orcidid>https://orcid.org/0000-0002-8033-4136</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-08, Vol.143 (33), p.13342-13349
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2560837036
source MEDLINE; American Chemical Society Journals
subjects Animals
CHO Cells
Cricetulus
Fluorescence
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
HeLa Cells
Hep G2 Cells
Humans
Lysosomes - chemistry
Lysosomes - metabolism
Molecular Structure
Optical Imaging
Polymers - chemistry
Polymers - metabolism
Temperature
title Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Red-Emissive%20Cell-Penetrating%20Polymer%20Dots%20Exhibiting%20Thermally%20Activated%20Delayed%20Fluorescence%20for%20Cellular%20Imaging&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Christopherson,%20Cheyenne%20J&rft.date=2021-08-25&rft.volume=143&rft.issue=33&rft.spage=13342&rft.epage=13349&rft.pages=13342-13349&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c06290&rft_dat=%3Cproquest_cross%3E2560837036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560837036&rft_id=info:pmid/34382775&rfr_iscdi=true