Machine Learning Roadmap for Perovskite Photovoltaics
Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stabi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-08, Vol.12 (32), p.7866-7877 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7877 |
---|---|
container_issue | 32 |
container_start_page | 7866 |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Srivastava, Meghna Howard, John M Gong, Tao Rebello Sousa Dias, Mariama Leite, Marina S |
description | Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization. |
doi_str_mv | 10.1021/acs.jpclett.1c01961 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2560836217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560836217</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFxy5JLUP0lsH1EFFCmICsHZ2rg2TUnjYLuVeHsM7YETp11pZ0azH0LXBBcEUzIDHYrNqHsTY0E0JrImJ2hCZClyTkR1-mc_RxchbDCuJRZ8gqon0OtuMFljwA_d8J69OFhtYcys89nSeLcPH1002XLtotu7PkKnwyU6s9AHc3WcU_R2f_c6X-TN88Pj_LbJgVEac1NW0lDN5KplUGLBWi1SBWFpCaWg0rSCp2JUk1ZDKxkBbrWQNa9YzZm1bIpuDrmjd587E6LadkGbvofBuF1QtKpTak0JT1J2kGrvQvDGqtF3W_BfimD1A0klSOoISR0hJdfs4Po9up0f0jv_Or4BLk1tOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560836217</pqid></control><display><type>article</type><title>Machine Learning Roadmap for Perovskite Photovoltaics</title><source>ACS Publications</source><creator>Srivastava, Meghna ; Howard, John M ; Gong, Tao ; Rebello Sousa Dias, Mariama ; Leite, Marina S</creator><creatorcontrib>Srivastava, Meghna ; Howard, John M ; Gong, Tao ; Rebello Sousa Dias, Mariama ; Leite, Marina S</creatorcontrib><description>Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c01961</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2021-08, Vol.12 (32), p.7866-7877</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</citedby><cites>FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</cites><orcidid>0000-0001-9090-0018 ; 0000-0003-4888-8195 ; 0000-0002-7469-8769 ; 0000-0002-3990-5478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c01961$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c01961$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Srivastava, Meghna</creatorcontrib><creatorcontrib>Howard, John M</creatorcontrib><creatorcontrib>Gong, Tao</creatorcontrib><creatorcontrib>Rebello Sousa Dias, Mariama</creatorcontrib><creatorcontrib>Leite, Marina S</creatorcontrib><title>Machine Learning Roadmap for Perovskite Photovoltaics</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFxy5JLUP0lsH1EFFCmICsHZ2rg2TUnjYLuVeHsM7YETp11pZ0azH0LXBBcEUzIDHYrNqHsTY0E0JrImJ2hCZClyTkR1-mc_RxchbDCuJRZ8gqon0OtuMFljwA_d8J69OFhtYcys89nSeLcPH1002XLtotu7PkKnwyU6s9AHc3WcU_R2f_c6X-TN88Pj_LbJgVEac1NW0lDN5KplUGLBWi1SBWFpCaWg0rSCp2JUk1ZDKxkBbrWQNa9YzZm1bIpuDrmjd587E6LadkGbvofBuF1QtKpTak0JT1J2kGrvQvDGqtF3W_BfimD1A0klSOoISR0hJdfs4Po9up0f0jv_Or4BLk1tOA</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Srivastava, Meghna</creator><creator>Howard, John M</creator><creator>Gong, Tao</creator><creator>Rebello Sousa Dias, Mariama</creator><creator>Leite, Marina S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9090-0018</orcidid><orcidid>https://orcid.org/0000-0003-4888-8195</orcidid><orcidid>https://orcid.org/0000-0002-7469-8769</orcidid><orcidid>https://orcid.org/0000-0002-3990-5478</orcidid></search><sort><creationdate>20210819</creationdate><title>Machine Learning Roadmap for Perovskite Photovoltaics</title><author>Srivastava, Meghna ; Howard, John M ; Gong, Tao ; Rebello Sousa Dias, Mariama ; Leite, Marina S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Meghna</creatorcontrib><creatorcontrib>Howard, John M</creatorcontrib><creatorcontrib>Gong, Tao</creatorcontrib><creatorcontrib>Rebello Sousa Dias, Mariama</creatorcontrib><creatorcontrib>Leite, Marina S</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Meghna</au><au>Howard, John M</au><au>Gong, Tao</au><au>Rebello Sousa Dias, Mariama</au><au>Leite, Marina S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Roadmap for Perovskite Photovoltaics</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>12</volume><issue>32</issue><spage>7866</spage><epage>7877</epage><pages>7866-7877</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c01961</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9090-0018</orcidid><orcidid>https://orcid.org/0000-0003-4888-8195</orcidid><orcidid>https://orcid.org/0000-0002-7469-8769</orcidid><orcidid>https://orcid.org/0000-0002-3990-5478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-08, Vol.12 (32), p.7866-7877 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2560836217 |
source | ACS Publications |
title | Machine Learning Roadmap for Perovskite Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Roadmap%20for%20Perovskite%20Photovoltaics&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Srivastava,%20Meghna&rft.date=2021-08-19&rft.volume=12&rft.issue=32&rft.spage=7866&rft.epage=7877&rft.pages=7866-7877&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c01961&rft_dat=%3Cproquest_cross%3E2560836217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560836217&rft_id=info:pmid/&rfr_iscdi=true |