Machine Learning Roadmap for Perovskite Photovoltaics

Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-08, Vol.12 (32), p.7866-7877
Hauptverfasser: Srivastava, Meghna, Howard, John M, Gong, Tao, Rebello Sousa Dias, Mariama, Leite, Marina S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7877
container_issue 32
container_start_page 7866
container_title The journal of physical chemistry letters
container_volume 12
creator Srivastava, Meghna
Howard, John M
Gong, Tao
Rebello Sousa Dias, Mariama
Leite, Marina S
description Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.
doi_str_mv 10.1021/acs.jpclett.1c01961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2560836217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560836217</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFxy5JLUP0lsH1EFFCmICsHZ2rg2TUnjYLuVeHsM7YETp11pZ0azH0LXBBcEUzIDHYrNqHsTY0E0JrImJ2hCZClyTkR1-mc_RxchbDCuJRZ8gqon0OtuMFljwA_d8J69OFhtYcys89nSeLcPH1002XLtotu7PkKnwyU6s9AHc3WcU_R2f_c6X-TN88Pj_LbJgVEac1NW0lDN5KplUGLBWi1SBWFpCaWg0rSCp2JUk1ZDKxkBbrWQNa9YzZm1bIpuDrmjd587E6LadkGbvofBuF1QtKpTak0JT1J2kGrvQvDGqtF3W_BfimD1A0klSOoISR0hJdfs4Po9up0f0jv_Or4BLk1tOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560836217</pqid></control><display><type>article</type><title>Machine Learning Roadmap for Perovskite Photovoltaics</title><source>ACS Publications</source><creator>Srivastava, Meghna ; Howard, John M ; Gong, Tao ; Rebello Sousa Dias, Mariama ; Leite, Marina S</creator><creatorcontrib>Srivastava, Meghna ; Howard, John M ; Gong, Tao ; Rebello Sousa Dias, Mariama ; Leite, Marina S</creatorcontrib><description>Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c01961</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2021-08, Vol.12 (32), p.7866-7877</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</citedby><cites>FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</cites><orcidid>0000-0001-9090-0018 ; 0000-0003-4888-8195 ; 0000-0002-7469-8769 ; 0000-0002-3990-5478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c01961$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c01961$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Srivastava, Meghna</creatorcontrib><creatorcontrib>Howard, John M</creatorcontrib><creatorcontrib>Gong, Tao</creatorcontrib><creatorcontrib>Rebello Sousa Dias, Mariama</creatorcontrib><creatorcontrib>Leite, Marina S</creatorcontrib><title>Machine Learning Roadmap for Perovskite Photovoltaics</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFxy5JLUP0lsH1EFFCmICsHZ2rg2TUnjYLuVeHsM7YETp11pZ0azH0LXBBcEUzIDHYrNqHsTY0E0JrImJ2hCZClyTkR1-mc_RxchbDCuJRZ8gqon0OtuMFljwA_d8J69OFhtYcys89nSeLcPH1002XLtotu7PkKnwyU6s9AHc3WcU_R2f_c6X-TN88Pj_LbJgVEac1NW0lDN5KplUGLBWi1SBWFpCaWg0rSCp2JUk1ZDKxkBbrWQNa9YzZm1bIpuDrmjd587E6LadkGbvofBuF1QtKpTak0JT1J2kGrvQvDGqtF3W_BfimD1A0klSOoISR0hJdfs4Po9up0f0jv_Or4BLk1tOA</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Srivastava, Meghna</creator><creator>Howard, John M</creator><creator>Gong, Tao</creator><creator>Rebello Sousa Dias, Mariama</creator><creator>Leite, Marina S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9090-0018</orcidid><orcidid>https://orcid.org/0000-0003-4888-8195</orcidid><orcidid>https://orcid.org/0000-0002-7469-8769</orcidid><orcidid>https://orcid.org/0000-0002-3990-5478</orcidid></search><sort><creationdate>20210819</creationdate><title>Machine Learning Roadmap for Perovskite Photovoltaics</title><author>Srivastava, Meghna ; Howard, John M ; Gong, Tao ; Rebello Sousa Dias, Mariama ; Leite, Marina S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-e459e2c39db3a4083bc81858f24a4829eb871942c1bcab931a7fc896753673ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, Meghna</creatorcontrib><creatorcontrib>Howard, John M</creatorcontrib><creatorcontrib>Gong, Tao</creatorcontrib><creatorcontrib>Rebello Sousa Dias, Mariama</creatorcontrib><creatorcontrib>Leite, Marina S</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, Meghna</au><au>Howard, John M</au><au>Gong, Tao</au><au>Rebello Sousa Dias, Mariama</au><au>Leite, Marina S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Roadmap for Perovskite Photovoltaics</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>12</volume><issue>32</issue><spage>7866</spage><epage>7877</epage><pages>7866-7877</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven prior to commercialization. However, traditional trial-and-error approaches to PSC screening, development, and stability testing are slow and labor-intensive. In this Perspective, we present a survey of how machine learning (ML) and autonomous experimentation provide additional toolkits to gain physical understanding while accelerating practical device advancement. We propose a roadmap for applying ML to PSC research at all stages of design (compositional selection, perovskite material synthesis and testing, and full device evaluation). We also provide an overview of relevant concepts and baseline models that apply ML to diverse materials problems, demonstrating its broad relevance while highlighting promising research directions and associated challenges. Finally, we discuss our outlook for an integrated pipeline that encompasses all design stages and presents a path to commercialization.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.1c01961</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9090-0018</orcidid><orcidid>https://orcid.org/0000-0003-4888-8195</orcidid><orcidid>https://orcid.org/0000-0002-7469-8769</orcidid><orcidid>https://orcid.org/0000-0002-3990-5478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-08, Vol.12 (32), p.7866-7877
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2560836217
source ACS Publications
title Machine Learning Roadmap for Perovskite Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Roadmap%20for%20Perovskite%20Photovoltaics&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Srivastava,%20Meghna&rft.date=2021-08-19&rft.volume=12&rft.issue=32&rft.spage=7866&rft.epage=7877&rft.pages=7866-7877&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c01961&rft_dat=%3Cproquest_cross%3E2560836217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560836217&rft_id=info:pmid/&rfr_iscdi=true