Derivation of closed-form Green's functions for a general microstrip geometry
The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically exp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 1992-11, Vol.40 (11), p.2055-2062 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2062 |
---|---|
container_issue | 11 |
container_start_page | 2055 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 40 |
creator | Aksun, M.I. Mittra, R. |
description | The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.< > |
doi_str_mv | 10.1109/22.168763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25607160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>168763</ieee_id><sourcerecordid>28233484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqUwsDJlAjGk-JnYI2qhIBWxwGz5cY2CkrjYKVL_PamCxMh0H-fTkc5B6JLgBSFY3VG6IJWsK3aEZkSIulRVjY_RDGMiS8UlPkVnOX-OJxdYztDLClLzbYYm9kUMhWtjBl-GmLpinQD6m1yEXe8O-rjFVJjiA3pIpi26xqWYh9Rsx1fsYEj7c3QSTJvh4nfO0fvjw9vyqdy8rp-X95vSUSFZCd4ob4MUhAZiQHEnBZWKem6ssrUNgiilqJWVx8oarLhyAjxxjDBunWdzdD35blP82kEedNdkB21reoi7rKmkjHHJ_wdFhWtS4RG8ncBDppwg6G1qOpP2mmB9aFZTqqdmR_ZqYhsA-OMm8QcAynOP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25607160</pqid></control><display><type>article</type><title>Derivation of closed-form Green's functions for a general microstrip geometry</title><source>IEEE Electronic Library (IEL)</source><creator>Aksun, M.I. ; Mittra, R.</creator><creatorcontrib>Aksun, M.I. ; Mittra, R.</creatorcontrib><description>The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.< ></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.168763</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Closed-form solution ; Geometry ; Green's function methods ; Laboratories ; Least squares approximation ; Linear approximation ; Message-oriented middleware ; Microstrip antennas ; Moment methods ; Printed circuits</subject><ispartof>IEEE transactions on microwave theory and techniques, 1992-11, Vol.40 (11), p.2055-2062</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</citedby><cites>FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/168763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/168763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aksun, M.I.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><title>Derivation of closed-form Green's functions for a general microstrip geometry</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.< ></description><subject>Closed-form solution</subject><subject>Geometry</subject><subject>Green's function methods</subject><subject>Laboratories</subject><subject>Least squares approximation</subject><subject>Linear approximation</subject><subject>Message-oriented middleware</subject><subject>Microstrip antennas</subject><subject>Moment methods</subject><subject>Printed circuits</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqUwsDJlAjGk-JnYI2qhIBWxwGz5cY2CkrjYKVL_PamCxMh0H-fTkc5B6JLgBSFY3VG6IJWsK3aEZkSIulRVjY_RDGMiS8UlPkVnOX-OJxdYztDLClLzbYYm9kUMhWtjBl-GmLpinQD6m1yEXe8O-rjFVJjiA3pIpi26xqWYh9Rsx1fsYEj7c3QSTJvh4nfO0fvjw9vyqdy8rp-X95vSUSFZCd4ob4MUhAZiQHEnBZWKem6ssrUNgiilqJWVx8oarLhyAjxxjDBunWdzdD35blP82kEedNdkB21reoi7rKmkjHHJ_wdFhWtS4RG8ncBDppwg6G1qOpP2mmB9aFZTqqdmR_ZqYhsA-OMm8QcAynOP</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Aksun, M.I.</creator><creator>Mittra, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19921101</creationdate><title>Derivation of closed-form Green's functions for a general microstrip geometry</title><author>Aksun, M.I. ; Mittra, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Closed-form solution</topic><topic>Geometry</topic><topic>Green's function methods</topic><topic>Laboratories</topic><topic>Least squares approximation</topic><topic>Linear approximation</topic><topic>Message-oriented middleware</topic><topic>Microstrip antennas</topic><topic>Moment methods</topic><topic>Printed circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aksun, M.I.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aksun, M.I.</au><au>Mittra, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of closed-form Green's functions for a general microstrip geometry</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1992-11-01</date><risdate>1992</risdate><volume>40</volume><issue>11</issue><spage>2055</spage><epage>2062</epage><pages>2055-2062</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.< ></abstract><pub>IEEE</pub><doi>10.1109/22.168763</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 1992-11, Vol.40 (11), p.2055-2062 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_miscellaneous_25607160 |
source | IEEE Electronic Library (IEL) |
subjects | Closed-form solution Geometry Green's function methods Laboratories Least squares approximation Linear approximation Message-oriented middleware Microstrip antennas Moment methods Printed circuits |
title | Derivation of closed-form Green's functions for a general microstrip geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20closed-form%20Green's%20functions%20for%20a%20general%20microstrip%20geometry&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Aksun,%20M.I.&rft.date=1992-11-01&rft.volume=40&rft.issue=11&rft.spage=2055&rft.epage=2062&rft.pages=2055-2062&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.168763&rft_dat=%3Cproquest_RIE%3E28233484%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25607160&rft_id=info:pmid/&rft_ieee_id=168763&rfr_iscdi=true |