Derivation of closed-form Green's functions for a general microstrip geometry

The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1992-11, Vol.40 (11), p.2055-2062
Hauptverfasser: Aksun, M.I., Mittra, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2062
container_issue 11
container_start_page 2055
container_title IEEE transactions on microwave theory and techniques
container_volume 40
creator Aksun, M.I.
Mittra, R.
description The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.< >
doi_str_mv 10.1109/22.168763
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25607160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>168763</ieee_id><sourcerecordid>28233484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqUwsDJlAjGk-JnYI2qhIBWxwGz5cY2CkrjYKVL_PamCxMh0H-fTkc5B6JLgBSFY3VG6IJWsK3aEZkSIulRVjY_RDGMiS8UlPkVnOX-OJxdYztDLClLzbYYm9kUMhWtjBl-GmLpinQD6m1yEXe8O-rjFVJjiA3pIpi26xqWYh9Rsx1fsYEj7c3QSTJvh4nfO0fvjw9vyqdy8rp-X95vSUSFZCd4ob4MUhAZiQHEnBZWKem6ssrUNgiilqJWVx8oarLhyAjxxjDBunWdzdD35blP82kEedNdkB21reoi7rKmkjHHJ_wdFhWtS4RG8ncBDppwg6G1qOpP2mmB9aFZTqqdmR_ZqYhsA-OMm8QcAynOP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25607160</pqid></control><display><type>article</type><title>Derivation of closed-form Green's functions for a general microstrip geometry</title><source>IEEE Electronic Library (IEL)</source><creator>Aksun, M.I. ; Mittra, R.</creator><creatorcontrib>Aksun, M.I. ; Mittra, R.</creatorcontrib><description>The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.&lt; &gt;</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.168763</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Closed-form solution ; Geometry ; Green's function methods ; Laboratories ; Least squares approximation ; Linear approximation ; Message-oriented middleware ; Microstrip antennas ; Moment methods ; Printed circuits</subject><ispartof>IEEE transactions on microwave theory and techniques, 1992-11, Vol.40 (11), p.2055-2062</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</citedby><cites>FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/168763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/168763$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aksun, M.I.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><title>Derivation of closed-form Green's functions for a general microstrip geometry</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.&lt; &gt;</description><subject>Closed-form solution</subject><subject>Geometry</subject><subject>Green's function methods</subject><subject>Laboratories</subject><subject>Least squares approximation</subject><subject>Linear approximation</subject><subject>Message-oriented middleware</subject><subject>Microstrip antennas</subject><subject>Moment methods</subject><subject>Printed circuits</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqUwsDJlAjGk-JnYI2qhIBWxwGz5cY2CkrjYKVL_PamCxMh0H-fTkc5B6JLgBSFY3VG6IJWsK3aEZkSIulRVjY_RDGMiS8UlPkVnOX-OJxdYztDLClLzbYYm9kUMhWtjBl-GmLpinQD6m1yEXe8O-rjFVJjiA3pIpi26xqWYh9Rsx1fsYEj7c3QSTJvh4nfO0fvjw9vyqdy8rp-X95vSUSFZCd4ob4MUhAZiQHEnBZWKem6ssrUNgiilqJWVx8oarLhyAjxxjDBunWdzdD35blP82kEedNdkB21reoi7rKmkjHHJ_wdFhWtS4RG8ncBDppwg6G1qOpP2mmB9aFZTqqdmR_ZqYhsA-OMm8QcAynOP</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Aksun, M.I.</creator><creator>Mittra, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19921101</creationdate><title>Derivation of closed-form Green's functions for a general microstrip geometry</title><author>Aksun, M.I. ; Mittra, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2583-eda9dbf8512f1ae94c852892d4ab9b7bf519992b86d09ba0949c5ed1c3134bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Closed-form solution</topic><topic>Geometry</topic><topic>Green's function methods</topic><topic>Laboratories</topic><topic>Least squares approximation</topic><topic>Linear approximation</topic><topic>Message-oriented middleware</topic><topic>Microstrip antennas</topic><topic>Moment methods</topic><topic>Printed circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aksun, M.I.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aksun, M.I.</au><au>Mittra, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of closed-form Green's functions for a general microstrip geometry</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1992-11-01</date><risdate>1992</risdate><volume>40</volume><issue>11</issue><spage>2055</spage><epage>2062</epage><pages>2055-2062</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>The derivation of the closed-form spatial domain Green's functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a superstrate, whose thicknesses can be arbitrary. The spatial domain Green's functions for printed circuits are typically expressed as Sommerfeld integrals, which are inverse Hankel transforms of the corresponding spectral domain Green's functions and are time-consuming to evaluate. Closed-form representations of these Green's functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. This is accomplished here by approximating the spectral domain Green's functions in terms of complex exponentials by using the least square Prony's method.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/22.168763</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 1992-11, Vol.40 (11), p.2055-2062
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_miscellaneous_25607160
source IEEE Electronic Library (IEL)
subjects Closed-form solution
Geometry
Green's function methods
Laboratories
Least squares approximation
Linear approximation
Message-oriented middleware
Microstrip antennas
Moment methods
Printed circuits
title Derivation of closed-form Green's functions for a general microstrip geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20closed-form%20Green's%20functions%20for%20a%20general%20microstrip%20geometry&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Aksun,%20M.I.&rft.date=1992-11-01&rft.volume=40&rft.issue=11&rft.spage=2055&rft.epage=2062&rft.pages=2055-2062&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.168763&rft_dat=%3Cproquest_RIE%3E28233484%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25607160&rft_id=info:pmid/&rft_ieee_id=168763&rfr_iscdi=true