Comprehensive computational analysis of the crimping procedure of PLLA BVS: effects of material viscous-plastic and temperature dependent behavior

Recently, researchers focused their attention on the use of polymeric bioresorbable vascular scaffolds (BVSs) as alternative to permanent metallic drug-eluting stents (DESs) for the treatment of atherosclerotic coronary arteries. Due to the different mechanical properties, polymeric stents, if compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2021-11, Vol.123, p.104713-104713, Article 104713
Hauptverfasser: Antonini, Luca, Poletti, Gianluca, Mandelli, Lorenzo, Dubini, Gabriele, Pennati, Giancarlo, Petrini, Lorenza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, researchers focused their attention on the use of polymeric bioresorbable vascular scaffolds (BVSs) as alternative to permanent metallic drug-eluting stents (DESs) for the treatment of atherosclerotic coronary arteries. Due to the different mechanical properties, polymeric stents, if compared to DESs, are characterized by larger strut size and specific design. It implies that during the crimping phase, BVSs undergo higher deformation and the packing of the struts, making this process potentially critical for the onset of damage. In this work, a computational study on the crimping procedure of a PLLA stent, inspired by the Absorb GT1 (Abbott Vascular) design, is performed, with the aim of evaluating how different strategies (loading steps, velocities and temperatures) can influence the results in terms of damage risk and final crimped diameter. For these simulations, an elastic-viscous-plastic model was adopted, based on experimental results, obtained from tensile testing of PLLA specimens loaded according to ad hoc experimental protocols. Furthermore, the results of these simulations were compared with those obtained by neglecting strain rate and temperature dependence in the material model (as often done in the literature), showing how this lead to significant differences in the prediction of the crimped diameter and internal stress state.
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2021.104713