NetAUC: A network-based multi-biomarker identification method by AUC optimization
•Propose a novel method for identifying biomarkers by AUC optimization model.•Combine gene expression and topological information from protein-protein interaction network to construct the integrated network.•Introduce the label propagation algorithm to highlight the important genes.•Introduce the sm...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2022-02, Vol.198, p.56-64 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | |
container_start_page | 56 |
container_title | Methods (San Diego, Calif.) |
container_volume | 198 |
creator | Li, Xing-Yi Xiang, Ju Wu, Fang-Xiang Li, Min |
description | •Propose a novel method for identifying biomarkers by AUC optimization model.•Combine gene expression and topological information from protein-protein interaction network to construct the integrated network.•Introduce the label propagation algorithm to highlight the important genes.•Introduce the smooth hinge loss function into AUC optimization model.
Complex diseases are caused by a variety of factors, and their diagnosis, treatment and prognosis are usually difficult. Proteins play an indispensable role in living organisms and perform specific biological functions by interacting with other proteins or biomolecules, their dysfunction may lead to diseases, it is a natural way to mine disease-related biomarkers from protein-protein interaction network. AUC, the area under the receiver operating characteristics (ROC) curve, is regarded as a gold standard to evaluate the effectiveness of a binary classifier, which measures the classification ability of an algorithm under arbitrary distribution or any misclassification cost. In this study, we have proposed a network-based multi-biomarker identification method by AUC optimization (NetAUC), which integrates gene expression and the network information to identify biomarkers for the complex disease analysis. The main purpose is to optimize two objectives simultaneously: maximizing AUC and minimizing the number of selected features. We have applied NetAUC to two types of disease analysis: 1) prognosis of breast cancer, 2) classification of similar diseases. The results show that NetAUC can identify a small panel of disease-related biomarkers which have the powerful classification ability and the functional interpretability. |
doi_str_mv | 10.1016/j.ymeth.2021.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2559669746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202321001997</els_id><sourcerecordid>2559669746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8c60a7c962d17036fd3d9b0991717d31bf149520d7dd56b522a25980288f7dcb3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotl6eQJBZupkxl5nMRHBRijcoimDXYSY5g2k7k5qkSn1604suXeXA-f78nA-hC4Izggm_nmXrDsJ7RjElGa4yjMkBGhIsilQQhg83c87TuGYDdOL9DEeCltUxGrCc8VxUfIhenyGMpuObZJT0EL6sm6dN7UEn3WoRTNoY29VuDi4xGvpgWqPqYGyfbJqtTpp1EtOJXQbTme_t6gwdtfXCw_n-PUXT-7u38WM6eXl4Go8mqWKFCGmlOK5LJTjVpMSMt5pp0WAhSElKzUjTklwUFOtS64I3BaU1LUSFaVW1pVYNO0VXu3-Xzn6swAfZGa9gsah7sCsvaVEIzkWZ84iyHaqc9d5BK5fOxLvWkmC5cSlncutSblxKXMloKqYu9wWrpgP9l_mVF4HbHQDxzE8DTnploFegjQMVpLbm34IfyBeFaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559669746</pqid></control><display><type>article</type><title>NetAUC: A network-based multi-biomarker identification method by AUC optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Xing-Yi ; Xiang, Ju ; Wu, Fang-Xiang ; Li, Min</creator><creatorcontrib>Li, Xing-Yi ; Xiang, Ju ; Wu, Fang-Xiang ; Li, Min</creatorcontrib><description>•Propose a novel method for identifying biomarkers by AUC optimization model.•Combine gene expression and topological information from protein-protein interaction network to construct the integrated network.•Introduce the label propagation algorithm to highlight the important genes.•Introduce the smooth hinge loss function into AUC optimization model.
Complex diseases are caused by a variety of factors, and their diagnosis, treatment and prognosis are usually difficult. Proteins play an indispensable role in living organisms and perform specific biological functions by interacting with other proteins or biomolecules, their dysfunction may lead to diseases, it is a natural way to mine disease-related biomarkers from protein-protein interaction network. AUC, the area under the receiver operating characteristics (ROC) curve, is regarded as a gold standard to evaluate the effectiveness of a binary classifier, which measures the classification ability of an algorithm under arbitrary distribution or any misclassification cost. In this study, we have proposed a network-based multi-biomarker identification method by AUC optimization (NetAUC), which integrates gene expression and the network information to identify biomarkers for the complex disease analysis. The main purpose is to optimize two objectives simultaneously: maximizing AUC and minimizing the number of selected features. We have applied NetAUC to two types of disease analysis: 1) prognosis of breast cancer, 2) classification of similar diseases. The results show that NetAUC can identify a small panel of disease-related biomarkers which have the powerful classification ability and the functional interpretability.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2021.08.001</identifier><identifier>PMID: 34364986</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Area Under Curve ; AUC optimization ; Biomarker ; Biomarkers ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Complex diseases ; Feature selection ; Female ; Humans ; Network information ; ROC Curve</subject><ispartof>Methods (San Diego, Calif.), 2022-02, Vol.198, p.56-64</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8c60a7c962d17036fd3d9b0991717d31bf149520d7dd56b522a25980288f7dcb3</citedby><cites>FETCH-LOGICAL-c359t-8c60a7c962d17036fd3d9b0991717d31bf149520d7dd56b522a25980288f7dcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2021.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34364986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xing-Yi</creatorcontrib><creatorcontrib>Xiang, Ju</creatorcontrib><creatorcontrib>Wu, Fang-Xiang</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><title>NetAUC: A network-based multi-biomarker identification method by AUC optimization</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•Propose a novel method for identifying biomarkers by AUC optimization model.•Combine gene expression and topological information from protein-protein interaction network to construct the integrated network.•Introduce the label propagation algorithm to highlight the important genes.•Introduce the smooth hinge loss function into AUC optimization model.
Complex diseases are caused by a variety of factors, and their diagnosis, treatment and prognosis are usually difficult. Proteins play an indispensable role in living organisms and perform specific biological functions by interacting with other proteins or biomolecules, their dysfunction may lead to diseases, it is a natural way to mine disease-related biomarkers from protein-protein interaction network. AUC, the area under the receiver operating characteristics (ROC) curve, is regarded as a gold standard to evaluate the effectiveness of a binary classifier, which measures the classification ability of an algorithm under arbitrary distribution or any misclassification cost. In this study, we have proposed a network-based multi-biomarker identification method by AUC optimization (NetAUC), which integrates gene expression and the network information to identify biomarkers for the complex disease analysis. The main purpose is to optimize two objectives simultaneously: maximizing AUC and minimizing the number of selected features. We have applied NetAUC to two types of disease analysis: 1) prognosis of breast cancer, 2) classification of similar diseases. The results show that NetAUC can identify a small panel of disease-related biomarkers which have the powerful classification ability and the functional interpretability.</description><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>AUC optimization</subject><subject>Biomarker</subject><subject>Biomarkers</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Complex diseases</subject><subject>Feature selection</subject><subject>Female</subject><subject>Humans</subject><subject>Network information</subject><subject>ROC Curve</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotl6eQJBZupkxl5nMRHBRijcoimDXYSY5g2k7k5qkSn1604suXeXA-f78nA-hC4Izggm_nmXrDsJ7RjElGa4yjMkBGhIsilQQhg83c87TuGYDdOL9DEeCltUxGrCc8VxUfIhenyGMpuObZJT0EL6sm6dN7UEn3WoRTNoY29VuDi4xGvpgWqPqYGyfbJqtTpp1EtOJXQbTme_t6gwdtfXCw_n-PUXT-7u38WM6eXl4Go8mqWKFCGmlOK5LJTjVpMSMt5pp0WAhSElKzUjTklwUFOtS64I3BaU1LUSFaVW1pVYNO0VXu3-Xzn6swAfZGa9gsah7sCsvaVEIzkWZ84iyHaqc9d5BK5fOxLvWkmC5cSlncutSblxKXMloKqYu9wWrpgP9l_mVF4HbHQDxzE8DTnploFegjQMVpLbm34IfyBeFaQ</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Li, Xing-Yi</creator><creator>Xiang, Ju</creator><creator>Wu, Fang-Xiang</creator><creator>Li, Min</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202202</creationdate><title>NetAUC: A network-based multi-biomarker identification method by AUC optimization</title><author>Li, Xing-Yi ; Xiang, Ju ; Wu, Fang-Xiang ; Li, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8c60a7c962d17036fd3d9b0991717d31bf149520d7dd56b522a25980288f7dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>AUC optimization</topic><topic>Biomarker</topic><topic>Biomarkers</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Complex diseases</topic><topic>Feature selection</topic><topic>Female</topic><topic>Humans</topic><topic>Network information</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xing-Yi</creatorcontrib><creatorcontrib>Xiang, Ju</creatorcontrib><creatorcontrib>Wu, Fang-Xiang</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xing-Yi</au><au>Xiang, Ju</au><au>Wu, Fang-Xiang</au><au>Li, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NetAUC: A network-based multi-biomarker identification method by AUC optimization</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2022-02</date><risdate>2022</risdate><volume>198</volume><spage>56</spage><epage>64</epage><pages>56-64</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>•Propose a novel method for identifying biomarkers by AUC optimization model.•Combine gene expression and topological information from protein-protein interaction network to construct the integrated network.•Introduce the label propagation algorithm to highlight the important genes.•Introduce the smooth hinge loss function into AUC optimization model.
Complex diseases are caused by a variety of factors, and their diagnosis, treatment and prognosis are usually difficult. Proteins play an indispensable role in living organisms and perform specific biological functions by interacting with other proteins or biomolecules, their dysfunction may lead to diseases, it is a natural way to mine disease-related biomarkers from protein-protein interaction network. AUC, the area under the receiver operating characteristics (ROC) curve, is regarded as a gold standard to evaluate the effectiveness of a binary classifier, which measures the classification ability of an algorithm under arbitrary distribution or any misclassification cost. In this study, we have proposed a network-based multi-biomarker identification method by AUC optimization (NetAUC), which integrates gene expression and the network information to identify biomarkers for the complex disease analysis. The main purpose is to optimize two objectives simultaneously: maximizing AUC and minimizing the number of selected features. We have applied NetAUC to two types of disease analysis: 1) prognosis of breast cancer, 2) classification of similar diseases. The results show that NetAUC can identify a small panel of disease-related biomarkers which have the powerful classification ability and the functional interpretability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34364986</pmid><doi>10.1016/j.ymeth.2021.08.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2022-02, Vol.198, p.56-64 |
issn | 1046-2023 1095-9130 |
language | eng |
recordid | cdi_proquest_miscellaneous_2559669746 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Area Under Curve AUC optimization Biomarker Biomarkers Breast Neoplasms - diagnosis Breast Neoplasms - genetics Complex diseases Feature selection Female Humans Network information ROC Curve |
title | NetAUC: A network-based multi-biomarker identification method by AUC optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NetAUC:%20A%20network-based%20multi-biomarker%20identification%20method%20by%20AUC%20optimization&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Li,%20Xing-Yi&rft.date=2022-02&rft.volume=198&rft.spage=56&rft.epage=64&rft.pages=56-64&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2021.08.001&rft_dat=%3Cproquest_cross%3E2559669746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559669746&rft_id=info:pmid/34364986&rft_els_id=S1046202321001997&rfr_iscdi=true |