Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery

Objectives The identification of viable tumor after stereotactic radiosurgery (SRS) is important for future targeted therapy. This study aimed to determine whether tumor habitat on structural and physiologic MRI can distinguish viable tumor from radiation necrosis of brain metastases after SRS. Meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2022-01, Vol.32 (1), p.497-507
Hauptverfasser: Lee, Da Hyun, Park, Ji Eun, Kim, NakYoung, Park, Seo Young, Kim, Young-Hoon, Cho, Young Hyun, Kim, Ho Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 1
container_start_page 497
container_title European radiology
container_volume 32
creator Lee, Da Hyun
Park, Ji Eun
Kim, NakYoung
Park, Seo Young
Kim, Young-Hoon
Cho, Young Hyun
Kim, Ho Sung
description Objectives The identification of viable tumor after stereotactic radiosurgery (SRS) is important for future targeted therapy. This study aimed to determine whether tumor habitat on structural and physiologic MRI can distinguish viable tumor from radiation necrosis of brain metastases after SRS. Method Multiparametric contrast-enhanced T1- and T2-weighted imaging, apparent diffusion coefficient (ADC), and cerebral blood volume (CBV) were obtained from 52 patients with 69 metastases, showing enlarging enhancing masses after SRS. Voxel-wise clustering identified three structural MRI habitats (enhancing, solid low-enhancing, and nonviable) and three physiologic MRI habitats (hypervascular cellular, hypovascular cellular, and nonviable). Habitat-based predictors for viable tumor or radiation necrosis were identified by logistic regression. Performance was validated using the area under the curve (AUC) of the receiver operating characteristics curve in an independent dataset with 24 patients. Results None of the physiologic MRI habitats was indicative of viable tumor. Viable tumor was predicted by a high-volume fraction of solid low-enhancing habitat (low T2-weighted and low CE-T1-weighted values; odds ratio [OR] 1.74, p
doi_str_mv 10.1007/s00330-021-08204-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2559433291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608265177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-acfd2168d9a8e0c2c169a259b99dad83927c5bad68a3bbc127e3062db92516e43</originalsourceid><addsrcrecordid>eNp9kcuKFTEQhoMoznH0BVxIwI2b1tz6kqUM4wUG3IzrUJ1On8lwOhlT6cV5Gx_V6nNGBRdCqCLJV39R9TP2Wor3Uoj-AwqhtWiEko0YlDCNfMJ20mjVSDGYp2wnrB6a3lpzwV4g3gshrDT9c3ahjW5708od-3m7LrnwOxhjhcohweGIEfl45AvsU6jR8xIwJ0g-8EhvMe35FLFSXiPeBeT1JPFQ8p5IjDnxueSFF5gi1O2agi95U42JjwUoLqEC0qFqmGsoHCmEXMGfGlJlxrXsQzm-ZM9mOGB49Zgv2fdP17dXX5qbb5-_Xn28abwxsjbg50nJbpgsDEF45WVnQbV2tHaCadBW9b4dYeoG0OPopeqDFp2aRqta2QWjL9m7sy7N8WMNWN0S0YfDAVLIKzrVttZorawk9O0_6H1eC22OqI6c6FrZ90SpM7XNjiXM7qHQ_srRSeE2_9zZP0f-uZN_bpN-8yi9jkuY_pT8NowAfQaQvhIt6G_v_8j-AnL-qp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608265177</pqid></control><display><type>article</type><title>Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Lee, Da Hyun ; Park, Ji Eun ; Kim, NakYoung ; Park, Seo Young ; Kim, Young-Hoon ; Cho, Young Hyun ; Kim, Ho Sung</creator><creatorcontrib>Lee, Da Hyun ; Park, Ji Eun ; Kim, NakYoung ; Park, Seo Young ; Kim, Young-Hoon ; Cho, Young Hyun ; Kim, Ho Sung</creatorcontrib><description>Objectives The identification of viable tumor after stereotactic radiosurgery (SRS) is important for future targeted therapy. This study aimed to determine whether tumor habitat on structural and physiologic MRI can distinguish viable tumor from radiation necrosis of brain metastases after SRS. Method Multiparametric contrast-enhanced T1- and T2-weighted imaging, apparent diffusion coefficient (ADC), and cerebral blood volume (CBV) were obtained from 52 patients with 69 metastases, showing enlarging enhancing masses after SRS. Voxel-wise clustering identified three structural MRI habitats (enhancing, solid low-enhancing, and nonviable) and three physiologic MRI habitats (hypervascular cellular, hypovascular cellular, and nonviable). Habitat-based predictors for viable tumor or radiation necrosis were identified by logistic regression. Performance was validated using the area under the curve (AUC) of the receiver operating characteristics curve in an independent dataset with 24 patients. Results None of the physiologic MRI habitats was indicative of viable tumor. Viable tumor was predicted by a high-volume fraction of solid low-enhancing habitat (low T2-weighted and low CE-T1-weighted values; odds ratio [OR] 1.74, p &lt;.001) and a low-volume fraction of nonviable tissue habitat (high T2-weighted and low CE-T1-weighted values; OR 0.55, p &lt;.001). Combined structural MRI habitats yielded good discriminatory ability in both development (AUC 0.85, 95% confidence interval [CI]: 0.77–0.94) and validation sets (AUC 0.86, 95% CI:0.70–0.99), outperforming single ADC (AUC 0.64) and CBV (AUC 0.58) values. The site of progression matched with the solid low-enhancing habitat (72%, 8/11). Conclusion Solid low-enhancing and nonviable tissue habitats on structural MRI can help to localize viable tumor in patients with brain metastases after SRS. Key Points • Structural MRI habitats helped to differentiate viable tumor from radiation necrosis. • Solid low-enhancing habitat was most helpful to find viable tumor. • Providing spatial information, the site of progression matched with solid low-enhancing habitat.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-021-08204-1</identifier><identifier>PMID: 34357451</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Blood volume ; Brain ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - radiotherapy ; Brain Neoplasms - surgery ; Brain tumors ; Cerebral blood flow ; Clustering ; Confidence intervals ; Diagnostic Radiology ; Diffusion coefficient ; Habitats ; Humans ; Imaging ; Internal Medicine ; Interventional Radiology ; Magnetic Resonance ; Magnetic Resonance Imaging ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Metastases ; Metastasis ; Necrosis ; Neuroimaging ; Neuroradiology ; Radiation ; Radiation Injuries ; Radiology ; Radiosurgery ; Spatial data ; Statistical analysis ; Surgery ; Tumors ; Ultrasound</subject><ispartof>European radiology, 2022-01, Vol.32 (1), p.497-507</ispartof><rights>European Society of Radiology 2021</rights><rights>2021. European Society of Radiology.</rights><rights>European Society of Radiology 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-acfd2168d9a8e0c2c169a259b99dad83927c5bad68a3bbc127e3062db92516e43</citedby><cites>FETCH-LOGICAL-c441t-acfd2168d9a8e0c2c169a259b99dad83927c5bad68a3bbc127e3062db92516e43</cites><orcidid>0000-0002-4419-4682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-021-08204-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-021-08204-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34357451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Da Hyun</creatorcontrib><creatorcontrib>Park, Ji Eun</creatorcontrib><creatorcontrib>Kim, NakYoung</creatorcontrib><creatorcontrib>Park, Seo Young</creatorcontrib><creatorcontrib>Kim, Young-Hoon</creatorcontrib><creatorcontrib>Cho, Young Hyun</creatorcontrib><creatorcontrib>Kim, Ho Sung</creatorcontrib><title>Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives The identification of viable tumor after stereotactic radiosurgery (SRS) is important for future targeted therapy. This study aimed to determine whether tumor habitat on structural and physiologic MRI can distinguish viable tumor from radiation necrosis of brain metastases after SRS. Method Multiparametric contrast-enhanced T1- and T2-weighted imaging, apparent diffusion coefficient (ADC), and cerebral blood volume (CBV) were obtained from 52 patients with 69 metastases, showing enlarging enhancing masses after SRS. Voxel-wise clustering identified three structural MRI habitats (enhancing, solid low-enhancing, and nonviable) and three physiologic MRI habitats (hypervascular cellular, hypovascular cellular, and nonviable). Habitat-based predictors for viable tumor or radiation necrosis were identified by logistic regression. Performance was validated using the area under the curve (AUC) of the receiver operating characteristics curve in an independent dataset with 24 patients. Results None of the physiologic MRI habitats was indicative of viable tumor. Viable tumor was predicted by a high-volume fraction of solid low-enhancing habitat (low T2-weighted and low CE-T1-weighted values; odds ratio [OR] 1.74, p &lt;.001) and a low-volume fraction of nonviable tissue habitat (high T2-weighted and low CE-T1-weighted values; OR 0.55, p &lt;.001). Combined structural MRI habitats yielded good discriminatory ability in both development (AUC 0.85, 95% confidence interval [CI]: 0.77–0.94) and validation sets (AUC 0.86, 95% CI:0.70–0.99), outperforming single ADC (AUC 0.64) and CBV (AUC 0.58) values. The site of progression matched with the solid low-enhancing habitat (72%, 8/11). Conclusion Solid low-enhancing and nonviable tissue habitats on structural MRI can help to localize viable tumor in patients with brain metastases after SRS. Key Points • Structural MRI habitats helped to differentiate viable tumor from radiation necrosis. • Solid low-enhancing habitat was most helpful to find viable tumor. • Providing spatial information, the site of progression matched with solid low-enhancing habitat.</description><subject>Blood volume</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Brain Neoplasms - surgery</subject><subject>Brain tumors</subject><subject>Cerebral blood flow</subject><subject>Clustering</subject><subject>Confidence intervals</subject><subject>Diagnostic Radiology</subject><subject>Diffusion coefficient</subject><subject>Habitats</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Magnetic Resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Necrosis</subject><subject>Neuroimaging</subject><subject>Neuroradiology</subject><subject>Radiation</subject><subject>Radiation Injuries</subject><subject>Radiology</subject><subject>Radiosurgery</subject><subject>Spatial data</subject><subject>Statistical analysis</subject><subject>Surgery</subject><subject>Tumors</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcuKFTEQhoMoznH0BVxIwI2b1tz6kqUM4wUG3IzrUJ1On8lwOhlT6cV5Gx_V6nNGBRdCqCLJV39R9TP2Wor3Uoj-AwqhtWiEko0YlDCNfMJ20mjVSDGYp2wnrB6a3lpzwV4g3gshrDT9c3ahjW5708od-3m7LrnwOxhjhcohweGIEfl45AvsU6jR8xIwJ0g-8EhvMe35FLFSXiPeBeT1JPFQ8p5IjDnxueSFF5gi1O2agi95U42JjwUoLqEC0qFqmGsoHCmEXMGfGlJlxrXsQzm-ZM9mOGB49Zgv2fdP17dXX5qbb5-_Xn28abwxsjbg50nJbpgsDEF45WVnQbV2tHaCadBW9b4dYeoG0OPopeqDFp2aRqta2QWjL9m7sy7N8WMNWN0S0YfDAVLIKzrVttZorawk9O0_6H1eC22OqI6c6FrZ90SpM7XNjiXM7qHQ_srRSeE2_9zZP0f-uZN_bpN-8yi9jkuY_pT8NowAfQaQvhIt6G_v_8j-AnL-qp8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Lee, Da Hyun</creator><creator>Park, Ji Eun</creator><creator>Kim, NakYoung</creator><creator>Park, Seo Young</creator><creator>Kim, Young-Hoon</creator><creator>Cho, Young Hyun</creator><creator>Kim, Ho Sung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4419-4682</orcidid></search><sort><creationdate>20220101</creationdate><title>Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery</title><author>Lee, Da Hyun ; Park, Ji Eun ; Kim, NakYoung ; Park, Seo Young ; Kim, Young-Hoon ; Cho, Young Hyun ; Kim, Ho Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-acfd2168d9a8e0c2c169a259b99dad83927c5bad68a3bbc127e3062db92516e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blood volume</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Brain Neoplasms - surgery</topic><topic>Brain tumors</topic><topic>Cerebral blood flow</topic><topic>Clustering</topic><topic>Confidence intervals</topic><topic>Diagnostic Radiology</topic><topic>Diffusion coefficient</topic><topic>Habitats</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Magnetic Resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Necrosis</topic><topic>Neuroimaging</topic><topic>Neuroradiology</topic><topic>Radiation</topic><topic>Radiation Injuries</topic><topic>Radiology</topic><topic>Radiosurgery</topic><topic>Spatial data</topic><topic>Statistical analysis</topic><topic>Surgery</topic><topic>Tumors</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Da Hyun</creatorcontrib><creatorcontrib>Park, Ji Eun</creatorcontrib><creatorcontrib>Kim, NakYoung</creatorcontrib><creatorcontrib>Park, Seo Young</creatorcontrib><creatorcontrib>Kim, Young-Hoon</creatorcontrib><creatorcontrib>Cho, Young Hyun</creatorcontrib><creatorcontrib>Kim, Ho Sung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Da Hyun</au><au>Park, Ji Eun</au><au>Kim, NakYoung</au><au>Park, Seo Young</au><au>Kim, Young-Hoon</au><au>Cho, Young Hyun</au><au>Kim, Ho Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>1</issue><spage>497</spage><epage>507</epage><pages>497-507</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives The identification of viable tumor after stereotactic radiosurgery (SRS) is important for future targeted therapy. This study aimed to determine whether tumor habitat on structural and physiologic MRI can distinguish viable tumor from radiation necrosis of brain metastases after SRS. Method Multiparametric contrast-enhanced T1- and T2-weighted imaging, apparent diffusion coefficient (ADC), and cerebral blood volume (CBV) were obtained from 52 patients with 69 metastases, showing enlarging enhancing masses after SRS. Voxel-wise clustering identified three structural MRI habitats (enhancing, solid low-enhancing, and nonviable) and three physiologic MRI habitats (hypervascular cellular, hypovascular cellular, and nonviable). Habitat-based predictors for viable tumor or radiation necrosis were identified by logistic regression. Performance was validated using the area under the curve (AUC) of the receiver operating characteristics curve in an independent dataset with 24 patients. Results None of the physiologic MRI habitats was indicative of viable tumor. Viable tumor was predicted by a high-volume fraction of solid low-enhancing habitat (low T2-weighted and low CE-T1-weighted values; odds ratio [OR] 1.74, p &lt;.001) and a low-volume fraction of nonviable tissue habitat (high T2-weighted and low CE-T1-weighted values; OR 0.55, p &lt;.001). Combined structural MRI habitats yielded good discriminatory ability in both development (AUC 0.85, 95% confidence interval [CI]: 0.77–0.94) and validation sets (AUC 0.86, 95% CI:0.70–0.99), outperforming single ADC (AUC 0.64) and CBV (AUC 0.58) values. The site of progression matched with the solid low-enhancing habitat (72%, 8/11). Conclusion Solid low-enhancing and nonviable tissue habitats on structural MRI can help to localize viable tumor in patients with brain metastases after SRS. Key Points • Structural MRI habitats helped to differentiate viable tumor from radiation necrosis. • Solid low-enhancing habitat was most helpful to find viable tumor. • Providing spatial information, the site of progression matched with solid low-enhancing habitat.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34357451</pmid><doi>10.1007/s00330-021-08204-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4419-4682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2022-01, Vol.32 (1), p.497-507
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2559433291
source MEDLINE; SpringerLink Journals
subjects Blood volume
Brain
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - radiotherapy
Brain Neoplasms - surgery
Brain tumors
Cerebral blood flow
Clustering
Confidence intervals
Diagnostic Radiology
Diffusion coefficient
Habitats
Humans
Imaging
Internal Medicine
Interventional Radiology
Magnetic Resonance
Magnetic Resonance Imaging
Medical imaging
Medicine
Medicine & Public Health
Metastases
Metastasis
Necrosis
Neuroimaging
Neuroradiology
Radiation
Radiation Injuries
Radiology
Radiosurgery
Spatial data
Statistical analysis
Surgery
Tumors
Ultrasound
title Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20habitat%20analysis%20by%20magnetic%20resonance%20imaging%20distinguishes%20tumor%20progression%20from%20radiation%20necrosis%20in%20brain%20metastases%20after%20stereotactic%20radiosurgery&rft.jtitle=European%20radiology&rft.au=Lee,%20Da%20Hyun&rft.date=2022-01-01&rft.volume=32&rft.issue=1&rft.spage=497&rft.epage=507&rft.pages=497-507&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-021-08204-1&rft_dat=%3Cproquest_cross%3E2608265177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608265177&rft_id=info:pmid/34357451&rfr_iscdi=true