An N-ethyl-N-Nitrosourea Mutagenesis Screen in Mice Reveals a Mutation in Nuclear Respiratory Factor 1 (Nrf1) Altering the DNA Methylation State and Correct Embryonic Development
Simple Summary In this work, we aimed to discover unknown genes that are important in the regulation of other genes. These genes often play an important role during the development of the embryo. By screening thousands of mice, we found a gene, namely, Nuclear Respiratory Factor 1 (Nrf1), that contr...
Gespeichert in:
Veröffentlicht in: | Animals (Basel) 2021-07, Vol.11 (7), p.2103, Article 2103 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simple Summary In this work, we aimed to discover unknown genes that are important in the regulation of other genes. These genes often play an important role during the development of the embryo. By screening thousands of mice, we found a gene, namely, Nuclear Respiratory Factor 1 (Nrf1), that controls the switching on and off of other genes. Mice with a defective Nrf1 present lesser levels of the gene and embryonic delay. When the mutation is in both chains of the DNA, mice are not born and die in the uterus. Our work unveils a novel, previously unknown functionality of Nrf1 and provides a new mice model for the study of diseases caused by a defective Nrf1. We have established a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify novel genes playing a role in epigenetic regulation in mammals. We hypothesize that the ENU mutagenesis screen will lead to the discovery of unknown genes responsible of the maintenance of the epigenetic state as the genes found are modifiers of variegation of the transgene green fluorescent protein (GFP) expression in erythrocytes, which are named MommeD. Here we report the generation of a novel mutant mouse line, MommeD46, that carries a new missense mutation producing an amino acid transversion (L71P) in the dimerization domain of Nuclear Respiratory Factor 1 (Nrf1). The molecular characterization of the mutation reveals a decrease in the Nrf1 mRNA levels and a novel role of Nrf1 in the maintenance of the DNA hypomethylation in vivo. The heritability of the mutation is consistent with paternal imprinting and haploinsufficiency. Homozygous mutants display embryonic lethality at 14.5 days post-coitum and developmental delay. This work adds a new epi-regulatory role to Nrf1 and uncovers unknown phenotypical defects of the Nrf1 hypomorph. The generated mouse line represents a valuable resource for studying NRF1-related diseases. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani11072103 |