Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells
Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renew...
Gespeichert in:
Veröffentlicht in: | Stem cell reviews and reports 2022, Vol.18 (1), p.198-213 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 1 |
container_start_page | 198 |
container_title | Stem cell reviews and reports |
container_volume | 18 |
creator | Naik, Prajna Paramita Panigrahi, Swagatika Parida, Ratnakar Praharaj, Prakash Priyadarshi Bhol, Chandra Sekhar Patil, Shankargouda Manjunath, NML Ghosh, Dipanjan Patra, Samir Kumar Bhutia, Sujit Kumar |
description | Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, “metabostemness” denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.
Graphical abstract |
doi_str_mv | 10.1007/s12015-021-10216-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2559426987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559426987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-da18a52c6fb64bc0906cbc37d8bb9c6758cff19eec8d84122efc37f3a5bc39c43</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EolXpH2BAkVhYAn7EScyGKl5SEQvMluPchJTECXYy9N_jNKVIDCy2pfOd46t7EDon-JpgnNw4QjHhIaYkJP6IQ3GE5jSmImQ0SY4P71jM0NK5DcaYMhx5zymasYhxThM2R_oFepW1rofGgHNBZQKtjAZ7G6wr81mZMmh2RN1CV5VgoK-0C5TJg6bq2-5DldvRZKFpc6hHfvIHY2Sgoa7dGTopVO1gub8X6P3h_m31FK5fH59Xd-tQs4T3Ya5IqjjVcZHFUaaxwLHOvJSnWSZ0nPBUFwURADrN04hQCoVXC6a4p4SO2AJdTbmdbb8GcL1sKjdOoAy0g5OUcxH5haSJRy__oJt2sMZPJ_3eGMdYxMxTdKK0bZ2zUMjOVo2yW0mwHFuQUwvSFyB3LUjhTRf76CFrID9YfnbuATYBzkumBPv79z-x36n2k3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623500963</pqid></control><display><type>article</type><title>Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Naik, Prajna Paramita ; Panigrahi, Swagatika ; Parida, Ratnakar ; Praharaj, Prakash Priyadarshi ; Bhol, Chandra Sekhar ; Patil, Shankargouda ; Manjunath, NML ; Ghosh, Dipanjan ; Patra, Samir Kumar ; Bhutia, Sujit Kumar</creator><creatorcontrib>Naik, Prajna Paramita ; Panigrahi, Swagatika ; Parida, Ratnakar ; Praharaj, Prakash Priyadarshi ; Bhol, Chandra Sekhar ; Patil, Shankargouda ; Manjunath, NML ; Ghosh, Dipanjan ; Patra, Samir Kumar ; Bhutia, Sujit Kumar</creatorcontrib><description>Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, “metabostemness” denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.
Graphical abstract</description><identifier>ISSN: 2629-3269</identifier><identifier>EISSN: 2629-3277</identifier><identifier>DOI: 10.1007/s12015-021-10216-9</identifier><identifier>PMID: 34355273</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Autophagy ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Cancer ; Cell Biology ; Cell differentiation ; Cell Differentiation - physiology ; Cell self-renewal ; Chromatin ; Epigenetics ; Humans ; Life Sciences ; Metabolism ; Metabolites ; Mitochondria ; Mitochondria - metabolism ; Mitophagy ; Mitophagy - genetics ; Neoplasms - metabolism ; Neoplastic Stem Cells - metabolism ; Regenerative Medicine/Tissue Engineering ; Stem Cells ; Tumor cells ; Tumorigenicity</subject><ispartof>Stem cell reviews and reports, 2022, Vol.18 (1), p.198-213</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-da18a52c6fb64bc0906cbc37d8bb9c6758cff19eec8d84122efc37f3a5bc39c43</citedby><cites>FETCH-LOGICAL-c375t-da18a52c6fb64bc0906cbc37d8bb9c6758cff19eec8d84122efc37f3a5bc39c43</cites><orcidid>0000-0003-0962-3354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12015-021-10216-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12015-021-10216-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34355273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naik, Prajna Paramita</creatorcontrib><creatorcontrib>Panigrahi, Swagatika</creatorcontrib><creatorcontrib>Parida, Ratnakar</creatorcontrib><creatorcontrib>Praharaj, Prakash Priyadarshi</creatorcontrib><creatorcontrib>Bhol, Chandra Sekhar</creatorcontrib><creatorcontrib>Patil, Shankargouda</creatorcontrib><creatorcontrib>Manjunath, NML</creatorcontrib><creatorcontrib>Ghosh, Dipanjan</creatorcontrib><creatorcontrib>Patra, Samir Kumar</creatorcontrib><creatorcontrib>Bhutia, Sujit Kumar</creatorcontrib><title>Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells</title><title>Stem cell reviews and reports</title><addtitle>Stem Cell Rev and Rep</addtitle><addtitle>Stem Cell Rev Rep</addtitle><description>Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, “metabostemness” denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.
Graphical abstract</description><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cell self-renewal</subject><subject>Chromatin</subject><subject>Epigenetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitophagy</subject><subject>Mitophagy - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stem Cells</subject><subject>Tumor cells</subject><subject>Tumorigenicity</subject><issn>2629-3269</issn><issn>2629-3277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kTtPwzAUhS0EolXpH2BAkVhYAn7EScyGKl5SEQvMluPchJTECXYy9N_jNKVIDCy2pfOd46t7EDon-JpgnNw4QjHhIaYkJP6IQ3GE5jSmImQ0SY4P71jM0NK5DcaYMhx5zymasYhxThM2R_oFepW1rofGgHNBZQKtjAZ7G6wr81mZMmh2RN1CV5VgoK-0C5TJg6bq2-5DldvRZKFpc6hHfvIHY2Sgoa7dGTopVO1gub8X6P3h_m31FK5fH59Xd-tQs4T3Ya5IqjjVcZHFUaaxwLHOvJSnWSZ0nPBUFwURADrN04hQCoVXC6a4p4SO2AJdTbmdbb8GcL1sKjdOoAy0g5OUcxH5haSJRy__oJt2sMZPJ_3eGMdYxMxTdKK0bZ2zUMjOVo2yW0mwHFuQUwvSFyB3LUjhTRf76CFrID9YfnbuATYBzkumBPv79z-x36n2k3c</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Naik, Prajna Paramita</creator><creator>Panigrahi, Swagatika</creator><creator>Parida, Ratnakar</creator><creator>Praharaj, Prakash Priyadarshi</creator><creator>Bhol, Chandra Sekhar</creator><creator>Patil, Shankargouda</creator><creator>Manjunath, NML</creator><creator>Ghosh, Dipanjan</creator><creator>Patra, Samir Kumar</creator><creator>Bhutia, Sujit Kumar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0962-3354</orcidid></search><sort><creationdate>2022</creationdate><title>Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells</title><author>Naik, Prajna Paramita ; Panigrahi, Swagatika ; Parida, Ratnakar ; Praharaj, Prakash Priyadarshi ; Bhol, Chandra Sekhar ; Patil, Shankargouda ; Manjunath, NML ; Ghosh, Dipanjan ; Patra, Samir Kumar ; Bhutia, Sujit Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-da18a52c6fb64bc0906cbc37d8bb9c6758cff19eec8d84122efc37f3a5bc39c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cell self-renewal</topic><topic>Chromatin</topic><topic>Epigenetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitophagy</topic><topic>Mitophagy - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stem Cells</topic><topic>Tumor cells</topic><topic>Tumorigenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Prajna Paramita</creatorcontrib><creatorcontrib>Panigrahi, Swagatika</creatorcontrib><creatorcontrib>Parida, Ratnakar</creatorcontrib><creatorcontrib>Praharaj, Prakash Priyadarshi</creatorcontrib><creatorcontrib>Bhol, Chandra Sekhar</creatorcontrib><creatorcontrib>Patil, Shankargouda</creatorcontrib><creatorcontrib>Manjunath, NML</creatorcontrib><creatorcontrib>Ghosh, Dipanjan</creatorcontrib><creatorcontrib>Patra, Samir Kumar</creatorcontrib><creatorcontrib>Bhutia, Sujit Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cell reviews and reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Prajna Paramita</au><au>Panigrahi, Swagatika</au><au>Parida, Ratnakar</au><au>Praharaj, Prakash Priyadarshi</au><au>Bhol, Chandra Sekhar</au><au>Patil, Shankargouda</au><au>Manjunath, NML</au><au>Ghosh, Dipanjan</au><au>Patra, Samir Kumar</au><au>Bhutia, Sujit Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells</atitle><jtitle>Stem cell reviews and reports</jtitle><stitle>Stem Cell Rev and Rep</stitle><addtitle>Stem Cell Rev Rep</addtitle><date>2022</date><risdate>2022</risdate><volume>18</volume><issue>1</issue><spage>198</spage><epage>213</epage><pages>198-213</pages><issn>2629-3269</issn><eissn>2629-3277</eissn><abstract>Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, “metabostemness” denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34355273</pmid><doi>10.1007/s12015-021-10216-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0962-3354</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2629-3269 |
ispartof | Stem cell reviews and reports, 2022, Vol.18 (1), p.198-213 |
issn | 2629-3269 2629-3277 |
language | eng |
recordid | cdi_proquest_miscellaneous_2559426987 |
source | MEDLINE; SpringerLink Journals |
subjects | Autophagy Biomedical and Life Sciences Biomedical Engineering and Bioengineering Cancer Cell Biology Cell differentiation Cell Differentiation - physiology Cell self-renewal Chromatin Epigenetics Humans Life Sciences Metabolism Metabolites Mitochondria Mitochondria - metabolism Mitophagy Mitophagy - genetics Neoplasms - metabolism Neoplastic Stem Cells - metabolism Regenerative Medicine/Tissue Engineering Stem Cells Tumor cells Tumorigenicity |
title | Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabostemness%20in%20cancer:%20Linking%20metaboloepigenetics%20and%20mitophagy%20in%20remodeling%20cancer%20stem%20cells&rft.jtitle=Stem%20cell%20reviews%20and%20reports&rft.au=Naik,%20Prajna%20Paramita&rft.date=2022&rft.volume=18&rft.issue=1&rft.spage=198&rft.epage=213&rft.pages=198-213&rft.issn=2629-3269&rft.eissn=2629-3277&rft_id=info:doi/10.1007/s12015-021-10216-9&rft_dat=%3Cproquest_cross%3E2559426987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623500963&rft_id=info:pmid/34355273&rfr_iscdi=true |