CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer

Drug resistance of tumor cells is always a headache problem in clinical treatment. In order to combat chemotherapy-resistance in cervical cancer and improve treatment effect, we design a CRISPR/Cas9 nanoeditor to knock out two key oncogenes E6 and E7 that lead to drug tolerance. Meanwhile, the delet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanobiotechnology 2021-08, Vol.19 (1), p.231-231, Article 231
Hauptverfasser: Li, Xianhuang, Guo, Mingming, Hou, Bei, Zheng, Bin, Wang, Zhiyun, Huang, Mengqian, Xu, Yanan, Chang, Jin, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 1
container_start_page 231
container_title Journal of nanobiotechnology
container_volume 19
creator Li, Xianhuang
Guo, Mingming
Hou, Bei
Zheng, Bin
Wang, Zhiyun
Huang, Mengqian
Xu, Yanan
Chang, Jin
Wang, Tao
description Drug resistance of tumor cells is always a headache problem in clinical treatment. In order to combat chemotherapy-resistance in cervical cancer and improve treatment effect, we design a CRISPR/Cas9 nanoeditor to knock out two key oncogenes E6 and E7 that lead to drug tolerance. Meanwhile, the deletion of these two oncogenes can effectively reactivate p53 and pRB signaling pathways that inhibit the growth of tumor cells. Our results demonstrated the nanoeditor could simultaneously delete two oncogenes, and the size of DNA fragments knocked out reaches an unprecedented 563 bp. After the preparation of cationic liposomes combined with chemotherapy drug docetaxel (DOC), this nanosystem can significantly inhibit the drug tolerance of cancer cells and improve the therapeutic effect of cervical cancer. Therefore, this study provides a promising strategy for the treatment of cervical cancer by combining chemotherapy and double-target gene therapy. This strategy can also be applied in other disease models to customize personalized anti-tumor strategies by simply changing chemotherapy drugs and targeted genes.
doi_str_mv 10.1186/s12951-021-00970-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2559425953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672288171</galeid><doaj_id>oai_doaj_org_article_2861a474ee9a4e3286ea91a1518ad78d</doaj_id><sourcerecordid>A672288171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-e7160e365009ffcc25d8e58eede4d5b4ac811c4da8fa51311addf04cbfa9bf53</originalsourceid><addsrcrecordid>eNqNkkFv1DAQhSMEoqXwBzggS1xAaFvbsRPnglStCqxUCdT2bs3a4-A2axc76cKVX463W0oXcUBRFHvyvefM5FXVS0YPGVPNUWa8k2xGeblp19LZ-lG1z0Tbzmom5eMH673qWc6XlHIuuHha7dWilnVdi_3q5_xscf7l7GgOuSMBQkTrx5hIdMTGaTkguQrRXMVpJAOkHolL0K8wjHmDnDQEgiUnLYnBxB4DZuKKOuENpuxDT2ya-lz22ecRgkHiAzGYbryBgZhNJT2vnjgYMr64ex5UFx9OLuafZqefPy7mx6czI7t2nGHLGop1I0uvzhnDpVUoFaJFYeVSgFGMGWFBOZCsZgysdVSYpYNu6WR9UC22tjbCpb5OfgXph47g9W0hpl5DGr0ZUHPVMBCtQOxAYF22CB0DJpkC2ypbvN5vva6n5QqtKfNIMOyY7r4J_qvu441WtaClhWLw5s4gxW8T5lGvfDY4DBAwTllzKTvBZVf-0kH1-i_0Mk4plEkVquGSdx1Tf6geSgM-uFjONRtTfdy0nCvFWlaow39Q5bK48iYGdL7UdwRvdwSFGfH72MOUs16cn-2yfMuaFHNO6O7nwajeBFZvA6tLYPVtYPW6iF49nOS95HdCC_BuC6xxGV02Hktm7jFKaVMOF11TVnTzDer_6bkfYfQxzOMUxvoXqLoGyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562529918</pqid></control><display><type>article</type><title>CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Xianhuang ; Guo, Mingming ; Hou, Bei ; Zheng, Bin ; Wang, Zhiyun ; Huang, Mengqian ; Xu, Yanan ; Chang, Jin ; Wang, Tao</creator><creatorcontrib>Li, Xianhuang ; Guo, Mingming ; Hou, Bei ; Zheng, Bin ; Wang, Zhiyun ; Huang, Mengqian ; Xu, Yanan ; Chang, Jin ; Wang, Tao</creatorcontrib><description>Drug resistance of tumor cells is always a headache problem in clinical treatment. In order to combat chemotherapy-resistance in cervical cancer and improve treatment effect, we design a CRISPR/Cas9 nanoeditor to knock out two key oncogenes E6 and E7 that lead to drug tolerance. Meanwhile, the deletion of these two oncogenes can effectively reactivate p53 and pRB signaling pathways that inhibit the growth of tumor cells. Our results demonstrated the nanoeditor could simultaneously delete two oncogenes, and the size of DNA fragments knocked out reaches an unprecedented 563 bp. After the preparation of cationic liposomes combined with chemotherapy drug docetaxel (DOC), this nanosystem can significantly inhibit the drug tolerance of cancer cells and improve the therapeutic effect of cervical cancer. Therefore, this study provides a promising strategy for the treatment of cervical cancer by combining chemotherapy and double-target gene therapy. This strategy can also be applied in other disease models to customize personalized anti-tumor strategies by simply changing chemotherapy drugs and targeted genes.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-021-00970-w</identifier><identifier>PMID: 34353334</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Animals ; Apoptosis ; Apoptosis - drug effects ; Biotechnology &amp; Applied Microbiology ; Cancer ; Cancer therapies ; Care and treatment ; Cervical cancer ; Cervix ; Chemotherapy ; CRISPR ; CRISPR-Cas Systems ; CRISPR/Cas9 ; Cytotoxicity ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; Drug resistance ; Drug Resistance, Neoplasm ; Drug tolerance ; Drugs ; Female ; Fragments ; Gene expression ; Gene Knockout Techniques ; Gene Targeting ; Gene therapy ; Genetic Therapy ; Health aspects ; Health services ; HeLa Cells ; Human papillomavirus ; Humans ; Life Sciences &amp; Biomedicine ; Management ; Mice ; Mice, Nude ; Microscopy ; Nanoeditor ; Nanomedicine ; Nanoparticles ; Nanoscience &amp; Nanotechnology ; Oncogene deletion ; Oncogenes ; Oncogenes - genetics ; p53 Protein ; Plasmids ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Tumor cells ; Tumors ; Uterine Cervical Neoplasms - genetics ; Uterine Cervical Neoplasms - therapy</subject><ispartof>Journal of nanobiotechnology, 2021-08, Vol.19 (1), p.231-231, Article 231</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000681749600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c597t-e7160e365009ffcc25d8e58eede4d5b4ac811c4da8fa51311addf04cbfa9bf53</citedby><cites>FETCH-LOGICAL-c597t-e7160e365009ffcc25d8e58eede4d5b4ac811c4da8fa51311addf04cbfa9bf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340365/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8340365/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,39262,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34353334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xianhuang</creatorcontrib><creatorcontrib>Guo, Mingming</creatorcontrib><creatorcontrib>Hou, Bei</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Wang, Zhiyun</creatorcontrib><creatorcontrib>Huang, Mengqian</creatorcontrib><creatorcontrib>Xu, Yanan</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><title>CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer</title><title>Journal of nanobiotechnology</title><addtitle>J NANOBIOTECHNOL</addtitle><addtitle>J Nanobiotechnology</addtitle><description>Drug resistance of tumor cells is always a headache problem in clinical treatment. In order to combat chemotherapy-resistance in cervical cancer and improve treatment effect, we design a CRISPR/Cas9 nanoeditor to knock out two key oncogenes E6 and E7 that lead to drug tolerance. Meanwhile, the deletion of these two oncogenes can effectively reactivate p53 and pRB signaling pathways that inhibit the growth of tumor cells. Our results demonstrated the nanoeditor could simultaneously delete two oncogenes, and the size of DNA fragments knocked out reaches an unprecedented 563 bp. After the preparation of cationic liposomes combined with chemotherapy drug docetaxel (DOC), this nanosystem can significantly inhibit the drug tolerance of cancer cells and improve the therapeutic effect of cervical cancer. Therefore, this study provides a promising strategy for the treatment of cervical cancer by combining chemotherapy and double-target gene therapy. This strategy can also be applied in other disease models to customize personalized anti-tumor strategies by simply changing chemotherapy drugs and targeted genes.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Chemotherapy</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR/Cas9</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Drug tolerance</subject><subject>Drugs</subject><subject>Female</subject><subject>Fragments</subject><subject>Gene expression</subject><subject>Gene Knockout Techniques</subject><subject>Gene Targeting</subject><subject>Gene therapy</subject><subject>Genetic Therapy</subject><subject>Health aspects</subject><subject>Health services</subject><subject>HeLa Cells</subject><subject>Human papillomavirus</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Management</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy</subject><subject>Nanoeditor</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Oncogene deletion</subject><subject>Oncogenes</subject><subject>Oncogenes - genetics</subject><subject>p53 Protein</subject><subject>Plasmids</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Uterine Cervical Neoplasms - genetics</subject><subject>Uterine Cervical Neoplasms - therapy</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkkFv1DAQhSMEoqXwBzggS1xAaFvbsRPnglStCqxUCdT2bs3a4-A2axc76cKVX463W0oXcUBRFHvyvefM5FXVS0YPGVPNUWa8k2xGeblp19LZ-lG1z0Tbzmom5eMH673qWc6XlHIuuHha7dWilnVdi_3q5_xscf7l7GgOuSMBQkTrx5hIdMTGaTkguQrRXMVpJAOkHolL0K8wjHmDnDQEgiUnLYnBxB4DZuKKOuENpuxDT2ya-lz22ecRgkHiAzGYbryBgZhNJT2vnjgYMr64ex5UFx9OLuafZqefPy7mx6czI7t2nGHLGop1I0uvzhnDpVUoFaJFYeVSgFGMGWFBOZCsZgysdVSYpYNu6WR9UC22tjbCpb5OfgXph47g9W0hpl5DGr0ZUHPVMBCtQOxAYF22CB0DJpkC2ypbvN5vva6n5QqtKfNIMOyY7r4J_qvu441WtaClhWLw5s4gxW8T5lGvfDY4DBAwTllzKTvBZVf-0kH1-i_0Mk4plEkVquGSdx1Tf6geSgM-uFjONRtTfdy0nCvFWlaow39Q5bK48iYGdL7UdwRvdwSFGfH72MOUs16cn-2yfMuaFHNO6O7nwajeBFZvA6tLYPVtYPW6iF49nOS95HdCC_BuC6xxGV02Hktm7jFKaVMOF11TVnTzDer_6bkfYfQxzOMUxvoXqLoGyg</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Li, Xianhuang</creator><creator>Guo, Mingming</creator><creator>Hou, Bei</creator><creator>Zheng, Bin</creator><creator>Wang, Zhiyun</creator><creator>Huang, Mengqian</creator><creator>Xu, Yanan</creator><creator>Chang, Jin</creator><creator>Wang, Tao</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210805</creationdate><title>CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer</title><author>Li, Xianhuang ; Guo, Mingming ; Hou, Bei ; Zheng, Bin ; Wang, Zhiyun ; Huang, Mengqian ; Xu, Yanan ; Chang, Jin ; Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-e7160e365009ffcc25d8e58eede4d5b4ac811c4da8fa51311addf04cbfa9bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Chemotherapy</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR/Cas9</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Drug tolerance</topic><topic>Drugs</topic><topic>Female</topic><topic>Fragments</topic><topic>Gene expression</topic><topic>Gene Knockout Techniques</topic><topic>Gene Targeting</topic><topic>Gene therapy</topic><topic>Genetic Therapy</topic><topic>Health aspects</topic><topic>Health services</topic><topic>HeLa Cells</topic><topic>Human papillomavirus</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Management</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy</topic><topic>Nanoeditor</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Oncogene deletion</topic><topic>Oncogenes</topic><topic>Oncogenes - genetics</topic><topic>p53 Protein</topic><topic>Plasmids</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Uterine Cervical Neoplasms - genetics</topic><topic>Uterine Cervical Neoplasms - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianhuang</creatorcontrib><creatorcontrib>Guo, Mingming</creatorcontrib><creatorcontrib>Hou, Bei</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Wang, Zhiyun</creatorcontrib><creatorcontrib>Huang, Mengqian</creatorcontrib><creatorcontrib>Xu, Yanan</creatorcontrib><creatorcontrib>Chang, Jin</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianhuang</au><au>Guo, Mingming</au><au>Hou, Bei</au><au>Zheng, Bin</au><au>Wang, Zhiyun</au><au>Huang, Mengqian</au><au>Xu, Yanan</au><au>Chang, Jin</au><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer</atitle><jtitle>Journal of nanobiotechnology</jtitle><stitle>J NANOBIOTECHNOL</stitle><addtitle>J Nanobiotechnology</addtitle><date>2021-08-05</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>231</spage><epage>231</epage><pages>231-231</pages><artnum>231</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>Drug resistance of tumor cells is always a headache problem in clinical treatment. In order to combat chemotherapy-resistance in cervical cancer and improve treatment effect, we design a CRISPR/Cas9 nanoeditor to knock out two key oncogenes E6 and E7 that lead to drug tolerance. Meanwhile, the deletion of these two oncogenes can effectively reactivate p53 and pRB signaling pathways that inhibit the growth of tumor cells. Our results demonstrated the nanoeditor could simultaneously delete two oncogenes, and the size of DNA fragments knocked out reaches an unprecedented 563 bp. After the preparation of cationic liposomes combined with chemotherapy drug docetaxel (DOC), this nanosystem can significantly inhibit the drug tolerance of cancer cells and improve the therapeutic effect of cervical cancer. Therefore, this study provides a promising strategy for the treatment of cervical cancer by combining chemotherapy and double-target gene therapy. This strategy can also be applied in other disease models to customize personalized anti-tumor strategies by simply changing chemotherapy drugs and targeted genes.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>34353334</pmid><doi>10.1186/s12951-021-00970-w</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-3155
ispartof Journal of nanobiotechnology, 2021-08, Vol.19 (1), p.231-231, Article 231
issn 1477-3155
1477-3155
language eng
recordid cdi_proquest_miscellaneous_2559425953
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Apoptosis
Apoptosis - drug effects
Biotechnology & Applied Microbiology
Cancer
Cancer therapies
Care and treatment
Cervical cancer
Cervix
Chemotherapy
CRISPR
CRISPR-Cas Systems
CRISPR/Cas9
Cytotoxicity
Deoxyribonucleic acid
Disease Models, Animal
DNA
Drug resistance
Drug Resistance, Neoplasm
Drug tolerance
Drugs
Female
Fragments
Gene expression
Gene Knockout Techniques
Gene Targeting
Gene therapy
Genetic Therapy
Health aspects
Health services
HeLa Cells
Human papillomavirus
Humans
Life Sciences & Biomedicine
Management
Mice
Mice, Nude
Microscopy
Nanoeditor
Nanomedicine
Nanoparticles
Nanoscience & Nanotechnology
Oncogene deletion
Oncogenes
Oncogenes - genetics
p53 Protein
Plasmids
Science & Technology
Science & Technology - Other Topics
Tumor cells
Tumors
Uterine Cervical Neoplasms - genetics
Uterine Cervical Neoplasms - therapy
title CRISPR/Cas9 nanoeditor of double knockout large fragments of E6 and E7 oncogenes for reversing drugs resistance in cervical cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9%20nanoeditor%20of%20double%20knockout%20large%20fragments%20of%20E6%20and%20E7%20oncogenes%20for%20reversing%20drugs%20resistance%20in%20cervical%20cancer&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Li,%20Xianhuang&rft.date=2021-08-05&rft.volume=19&rft.issue=1&rft.spage=231&rft.epage=231&rft.pages=231-231&rft.artnum=231&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-021-00970-w&rft_dat=%3Cgale_proqu%3EA672288171%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562529918&rft_id=info:pmid/34353334&rft_galeid=A672288171&rft_doaj_id=oai_doaj_org_article_2861a474ee9a4e3286ea91a1518ad78d&rfr_iscdi=true