Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride

Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-08, Vol.15 (8), p.13591-13603
Hauptverfasser: Stewart, James Callum, Fan, Ye, Danial, John S. H, Goetz, Alexander, Prasad, Adarsh S, Burton, Oliver J, Alexander-Webber, Jack A, Lee, Steven F, Skoff, Sarah M, Babenko, Vitaliy, Hofmann, Stephan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13603
container_issue 8
container_start_page 13591
container_title ACS nano
container_volume 15
creator Stewart, James Callum
Fan, Ye
Danial, John S. H
Goetz, Alexander
Prasad, Adarsh S
Burton, Oliver J
Alexander-Webber, Jack A
Lee, Steven F
Skoff, Sarah M
Babenko, Vitaliy
Hofmann, Stephan
description Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.
doi_str_mv 10.1021/acsnano.1c04467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2558452670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558452670</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrz0K0i1J86M96phOKIqg4C1k6cvIaJOZtOD8661sePP0vvA-3wfvg9A1wTOCKZlrk7z2YUYMZkzIEzQhVSFyXIqP07_MyTm6SGmLMZelFBO0eh2074cuW3au7yFmdTC6dd-6d8Fnzme13kPMl37jPECEJlvBl94Er9vsPsSReXZ9dA1cojOr2wRXxzlF7w_Lt8Uqr18enxZ3da4LTvqckqKysjKFtqJZw9rqijNbClqVQpqmaVhpheQNk5aABktLoMwSXQgmqYGimKKbw91dDJ8DpF51LhloW-0hDElRzkvGqZB4ROcH1MSQUgSrdtF1Ou4VwerXmTo6U0dnY-P20BgXahuGOL6Z_qV_ALExcFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558452670</pqid></control><display><type>article</type><title>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</title><source>ACS Publications</source><creator>Stewart, James Callum ; Fan, Ye ; Danial, John S. H ; Goetz, Alexander ; Prasad, Adarsh S ; Burton, Oliver J ; Alexander-Webber, Jack A ; Lee, Steven F ; Skoff, Sarah M ; Babenko, Vitaliy ; Hofmann, Stephan</creator><creatorcontrib>Stewart, James Callum ; Fan, Ye ; Danial, John S. H ; Goetz, Alexander ; Prasad, Adarsh S ; Burton, Oliver J ; Alexander-Webber, Jack A ; Lee, Steven F ; Skoff, Sarah M ; Babenko, Vitaliy ; Hofmann, Stephan</creatorcontrib><description>Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c04467</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-08, Vol.15 (8), p.13591-13603</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</citedby><cites>FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</cites><orcidid>0000-0003-4492-5139 ; 0000-0001-6375-1459 ; 0000-0002-9374-7423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c04467$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c04467$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Stewart, James Callum</creatorcontrib><creatorcontrib>Fan, Ye</creatorcontrib><creatorcontrib>Danial, John S. H</creatorcontrib><creatorcontrib>Goetz, Alexander</creatorcontrib><creatorcontrib>Prasad, Adarsh S</creatorcontrib><creatorcontrib>Burton, Oliver J</creatorcontrib><creatorcontrib>Alexander-Webber, Jack A</creatorcontrib><creatorcontrib>Lee, Steven F</creatorcontrib><creatorcontrib>Skoff, Sarah M</creatorcontrib><creatorcontrib>Babenko, Vitaliy</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><title>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdnrz0K0i1J86M96phOKIqg4C1k6cvIaJOZtOD8661sePP0vvA-3wfvg9A1wTOCKZlrk7z2YUYMZkzIEzQhVSFyXIqP07_MyTm6SGmLMZelFBO0eh2074cuW3au7yFmdTC6dd-6d8Fnzme13kPMl37jPECEJlvBl94Er9vsPsSReXZ9dA1cojOr2wRXxzlF7w_Lt8Uqr18enxZ3da4LTvqckqKysjKFtqJZw9rqijNbClqVQpqmaVhpheQNk5aABktLoMwSXQgmqYGimKKbw91dDJ8DpF51LhloW-0hDElRzkvGqZB4ROcH1MSQUgSrdtF1Ou4VwerXmTo6U0dnY-P20BgXahuGOL6Z_qV_ALExcFk</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Stewart, James Callum</creator><creator>Fan, Ye</creator><creator>Danial, John S. H</creator><creator>Goetz, Alexander</creator><creator>Prasad, Adarsh S</creator><creator>Burton, Oliver J</creator><creator>Alexander-Webber, Jack A</creator><creator>Lee, Steven F</creator><creator>Skoff, Sarah M</creator><creator>Babenko, Vitaliy</creator><creator>Hofmann, Stephan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-9374-7423</orcidid></search><sort><creationdate>20210824</creationdate><title>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</title><author>Stewart, James Callum ; Fan, Ye ; Danial, John S. H ; Goetz, Alexander ; Prasad, Adarsh S ; Burton, Oliver J ; Alexander-Webber, Jack A ; Lee, Steven F ; Skoff, Sarah M ; Babenko, Vitaliy ; Hofmann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, James Callum</creatorcontrib><creatorcontrib>Fan, Ye</creatorcontrib><creatorcontrib>Danial, John S. H</creatorcontrib><creatorcontrib>Goetz, Alexander</creatorcontrib><creatorcontrib>Prasad, Adarsh S</creatorcontrib><creatorcontrib>Burton, Oliver J</creatorcontrib><creatorcontrib>Alexander-Webber, Jack A</creatorcontrib><creatorcontrib>Lee, Steven F</creatorcontrib><creatorcontrib>Skoff, Sarah M</creatorcontrib><creatorcontrib>Babenko, Vitaliy</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, James Callum</au><au>Fan, Ye</au><au>Danial, John S. H</au><au>Goetz, Alexander</au><au>Prasad, Adarsh S</au><au>Burton, Oliver J</au><au>Alexander-Webber, Jack A</au><au>Lee, Steven F</au><au>Skoff, Sarah M</au><au>Babenko, Vitaliy</au><au>Hofmann, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>13591</spage><epage>13603</epage><pages>13591-13603</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c04467</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-9374-7423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-08, Vol.15 (8), p.13591-13603
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2558452670
source ACS Publications
title Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Emitter%20Localization%20in%20Layer-Engineered%20Hexagonal%20Boron%20Nitride&rft.jtitle=ACS%20nano&rft.au=Stewart,%20James%20Callum&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=13591&rft.epage=13603&rft.pages=13591-13603&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c04467&rft_dat=%3Cproquest_cross%3E2558452670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558452670&rft_id=info:pmid/&rfr_iscdi=true