Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride
Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of th...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-08, Vol.15 (8), p.13591-13603 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13603 |
---|---|
container_issue | 8 |
container_start_page | 13591 |
container_title | ACS nano |
container_volume | 15 |
creator | Stewart, James Callum Fan, Ye Danial, John S. H Goetz, Alexander Prasad, Adarsh S Burton, Oliver J Alexander-Webber, Jack A Lee, Steven F Skoff, Sarah M Babenko, Vitaliy Hofmann, Stephan |
description | Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits. |
doi_str_mv | 10.1021/acsnano.1c04467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2558452670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558452670</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrz0K0i1J86M96phOKIqg4C1k6cvIaJOZtOD8661sePP0vvA-3wfvg9A1wTOCKZlrk7z2YUYMZkzIEzQhVSFyXIqP07_MyTm6SGmLMZelFBO0eh2074cuW3au7yFmdTC6dd-6d8Fnzme13kPMl37jPECEJlvBl94Er9vsPsSReXZ9dA1cojOr2wRXxzlF7w_Lt8Uqr18enxZ3da4LTvqckqKysjKFtqJZw9rqijNbClqVQpqmaVhpheQNk5aABktLoMwSXQgmqYGimKKbw91dDJ8DpF51LhloW-0hDElRzkvGqZB4ROcH1MSQUgSrdtF1Ou4VwerXmTo6U0dnY-P20BgXahuGOL6Z_qV_ALExcFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558452670</pqid></control><display><type>article</type><title>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</title><source>ACS Publications</source><creator>Stewart, James Callum ; Fan, Ye ; Danial, John S. H ; Goetz, Alexander ; Prasad, Adarsh S ; Burton, Oliver J ; Alexander-Webber, Jack A ; Lee, Steven F ; Skoff, Sarah M ; Babenko, Vitaliy ; Hofmann, Stephan</creator><creatorcontrib>Stewart, James Callum ; Fan, Ye ; Danial, John S. H ; Goetz, Alexander ; Prasad, Adarsh S ; Burton, Oliver J ; Alexander-Webber, Jack A ; Lee, Steven F ; Skoff, Sarah M ; Babenko, Vitaliy ; Hofmann, Stephan</creatorcontrib><description>Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c04467</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-08, Vol.15 (8), p.13591-13603</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</citedby><cites>FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</cites><orcidid>0000-0003-4492-5139 ; 0000-0001-6375-1459 ; 0000-0002-9374-7423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c04467$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c04467$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Stewart, James Callum</creatorcontrib><creatorcontrib>Fan, Ye</creatorcontrib><creatorcontrib>Danial, John S. H</creatorcontrib><creatorcontrib>Goetz, Alexander</creatorcontrib><creatorcontrib>Prasad, Adarsh S</creatorcontrib><creatorcontrib>Burton, Oliver J</creatorcontrib><creatorcontrib>Alexander-Webber, Jack A</creatorcontrib><creatorcontrib>Lee, Steven F</creatorcontrib><creatorcontrib>Skoff, Sarah M</creatorcontrib><creatorcontrib>Babenko, Vitaliy</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><title>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdnrz0K0i1J86M96phOKIqg4C1k6cvIaJOZtOD8661sePP0vvA-3wfvg9A1wTOCKZlrk7z2YUYMZkzIEzQhVSFyXIqP07_MyTm6SGmLMZelFBO0eh2074cuW3au7yFmdTC6dd-6d8Fnzme13kPMl37jPECEJlvBl94Er9vsPsSReXZ9dA1cojOr2wRXxzlF7w_Lt8Uqr18enxZ3da4LTvqckqKysjKFtqJZw9rqijNbClqVQpqmaVhpheQNk5aABktLoMwSXQgmqYGimKKbw91dDJ8DpF51LhloW-0hDElRzkvGqZB4ROcH1MSQUgSrdtF1Ou4VwerXmTo6U0dnY-P20BgXahuGOL6Z_qV_ALExcFk</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Stewart, James Callum</creator><creator>Fan, Ye</creator><creator>Danial, John S. H</creator><creator>Goetz, Alexander</creator><creator>Prasad, Adarsh S</creator><creator>Burton, Oliver J</creator><creator>Alexander-Webber, Jack A</creator><creator>Lee, Steven F</creator><creator>Skoff, Sarah M</creator><creator>Babenko, Vitaliy</creator><creator>Hofmann, Stephan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-9374-7423</orcidid></search><sort><creationdate>20210824</creationdate><title>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</title><author>Stewart, James Callum ; Fan, Ye ; Danial, John S. H ; Goetz, Alexander ; Prasad, Adarsh S ; Burton, Oliver J ; Alexander-Webber, Jack A ; Lee, Steven F ; Skoff, Sarah M ; Babenko, Vitaliy ; Hofmann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-2139f79c3af6dbebfa954f8629867cddd48f675d47f1eaef28e24f1a36472ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, James Callum</creatorcontrib><creatorcontrib>Fan, Ye</creatorcontrib><creatorcontrib>Danial, John S. H</creatorcontrib><creatorcontrib>Goetz, Alexander</creatorcontrib><creatorcontrib>Prasad, Adarsh S</creatorcontrib><creatorcontrib>Burton, Oliver J</creatorcontrib><creatorcontrib>Alexander-Webber, Jack A</creatorcontrib><creatorcontrib>Lee, Steven F</creatorcontrib><creatorcontrib>Skoff, Sarah M</creatorcontrib><creatorcontrib>Babenko, Vitaliy</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, James Callum</au><au>Fan, Ye</au><au>Danial, John S. H</au><au>Goetz, Alexander</au><au>Prasad, Adarsh S</au><au>Burton, Oliver J</au><au>Alexander-Webber, Jack A</au><au>Lee, Steven F</au><au>Skoff, Sarah M</au><au>Babenko, Vitaliy</au><au>Hofmann, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>13591</spage><epage>13603</epage><pages>13591-13603</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x–y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c04467</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><orcidid>https://orcid.org/0000-0002-9374-7423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-08, Vol.15 (8), p.13591-13603 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2558452670 |
source | ACS Publications |
title | Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Emitter%20Localization%20in%20Layer-Engineered%20Hexagonal%20Boron%20Nitride&rft.jtitle=ACS%20nano&rft.au=Stewart,%20James%20Callum&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=13591&rft.epage=13603&rft.pages=13591-13603&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c04467&rft_dat=%3Cproquest_cross%3E2558452670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558452670&rft_id=info:pmid/&rfr_iscdi=true |