Beyond massive parallelism: numerical computation using associative tables
Novel computing devices are exploited for numerical computation. The solution of a numerical problem is sought, which has been solved many times before, but this time with a different set of input data. A table is a classical way to collect the old solutions in order to exploit them to find the new...
Gespeichert in:
Veröffentlicht in: | Parallel computing 1990, Vol.16 (1), p.1-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Parallel computing |
container_volume | 16 |
creator | Douglas, Craig C. Miranker, Willard L. |
description | Novel computing devices are exploited for numerical computation. The solution of a numerical problem is sought, which has been solved many times before, but this time with a different set of input data. A table is a classical way to collect the old solutions in order to exploit them to find the new one. This process is extended to more general problems than the usual function value approximation. To do this, a new concept of table is introduced. These tables are addressed associatively. Several problems are treated both theoretically and computationally. These problems include solving linear systems of equations, partial differential equations, nonlinear systems of ordinary differential equations, and Karmarkar's algorithm. Hardware requirements are discussed. |
doi_str_mv | 10.1016/0167-8191(90)90155-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25582137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0167819190901553</els_id><sourcerecordid>25582137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-860ccbcf1d35dbe39b298abc6097ed1c48598780c39b9f4171c5a46caa3fd4543</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9KHqoJk3SJh4EXfxkwYueQzqdSqRfJu3C_nuzrujNQxjIPO8M8xByzOgFoyy_jK9IFdPsTNNzTZmUKd8hM6aKLC04z3fJ7BfZJwchfFBKc6HojDzf4rrvqqS1IbgVJoP1tmmwcaG9SrqpRe_ANgn07TCNdnR9l0zBde9J5Htw8SeGRls2GA7JXm2bgEc_dU7e7u9eF4_p8uXhaXGzTIHnckxVTgFKqFnFZVUi12WmlS0hp7rAioFQUqtCUYgdXQtWMJBW5GAtryshBZ-T0-3cwfefE4bRtC4ANo3tsJ-CyaRUGeNFBMUWBN-H4LE2g3et9WvDqNmIMxsrZmPFaGq-xRkeYyc_822It9feduDCX1aLLDrNI3e95TAeu3LoTQCHHWDlPMJoqt79v-gL1T2C1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25582137</pqid></control><display><type>article</type><title>Beyond massive parallelism: numerical computation using associative tables</title><source>Elsevier ScienceDirect Journals</source><creator>Douglas, Craig C. ; Miranker, Willard L.</creator><creatorcontrib>Douglas, Craig C. ; Miranker, Willard L.</creatorcontrib><description>Novel computing devices are exploited for numerical computation. The solution of a numerical problem is sought, which has been solved many times before, but this time with a different set of input data. A table is a classical way to collect the old solutions in order to exploit them to find the new one. This process is extended to more general problems than the usual function value approximation. To do this, a new concept of table is introduced. These tables are addressed associatively. Several problems are treated both theoretically and computationally. These problems include solving linear systems of equations, partial differential equations, nonlinear systems of ordinary differential equations, and Karmarkar's algorithm. Hardware requirements are discussed.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/0167-8191(90)90155-3</identifier><identifier>CODEN: PACOEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Associative memory ; Computer science; control theory; systems ; Exact sciences and technology ; Karmarkar's algorithm ; Linear systems of equations ; Ordinary and partial differential equations ; Table methods ; Theoretical computing</subject><ispartof>Parallel computing, 1990, Vol.16 (1), p.1-25</ispartof><rights>1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-860ccbcf1d35dbe39b298abc6097ed1c48598780c39b9f4171c5a46caa3fd4543</citedby><cites>FETCH-LOGICAL-c365t-860ccbcf1d35dbe39b298abc6097ed1c48598780c39b9f4171c5a46caa3fd4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0167819190901553$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19423366$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglas, Craig C.</creatorcontrib><creatorcontrib>Miranker, Willard L.</creatorcontrib><title>Beyond massive parallelism: numerical computation using associative tables</title><title>Parallel computing</title><description>Novel computing devices are exploited for numerical computation. The solution of a numerical problem is sought, which has been solved many times before, but this time with a different set of input data. A table is a classical way to collect the old solutions in order to exploit them to find the new one. This process is extended to more general problems than the usual function value approximation. To do this, a new concept of table is introduced. These tables are addressed associatively. Several problems are treated both theoretically and computationally. These problems include solving linear systems of equations, partial differential equations, nonlinear systems of ordinary differential equations, and Karmarkar's algorithm. Hardware requirements are discussed.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Associative memory</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Karmarkar's algorithm</subject><subject>Linear systems of equations</subject><subject>Ordinary and partial differential equations</subject><subject>Table methods</subject><subject>Theoretical computing</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9KHqoJk3SJh4EXfxkwYueQzqdSqRfJu3C_nuzrujNQxjIPO8M8xByzOgFoyy_jK9IFdPsTNNzTZmUKd8hM6aKLC04z3fJ7BfZJwchfFBKc6HojDzf4rrvqqS1IbgVJoP1tmmwcaG9SrqpRe_ANgn07TCNdnR9l0zBde9J5Htw8SeGRls2GA7JXm2bgEc_dU7e7u9eF4_p8uXhaXGzTIHnckxVTgFKqFnFZVUi12WmlS0hp7rAioFQUqtCUYgdXQtWMJBW5GAtryshBZ-T0-3cwfefE4bRtC4ANo3tsJ-CyaRUGeNFBMUWBN-H4LE2g3et9WvDqNmIMxsrZmPFaGq-xRkeYyc_822It9feduDCX1aLLDrNI3e95TAeu3LoTQCHHWDlPMJoqt79v-gL1T2C1w</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Douglas, Craig C.</creator><creator>Miranker, Willard L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1990</creationdate><title>Beyond massive parallelism: numerical computation using associative tables</title><author>Douglas, Craig C. ; Miranker, Willard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-860ccbcf1d35dbe39b298abc6097ed1c48598780c39b9f4171c5a46caa3fd4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Associative memory</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Karmarkar's algorithm</topic><topic>Linear systems of equations</topic><topic>Ordinary and partial differential equations</topic><topic>Table methods</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglas, Craig C.</creatorcontrib><creatorcontrib>Miranker, Willard L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglas, Craig C.</au><au>Miranker, Willard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond massive parallelism: numerical computation using associative tables</atitle><jtitle>Parallel computing</jtitle><date>1990</date><risdate>1990</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><coden>PACOEJ</coden><abstract>Novel computing devices are exploited for numerical computation. The solution of a numerical problem is sought, which has been solved many times before, but this time with a different set of input data. A table is a classical way to collect the old solutions in order to exploit them to find the new one. This process is extended to more general problems than the usual function value approximation. To do this, a new concept of table is introduced. These tables are addressed associatively. Several problems are treated both theoretically and computationally. These problems include solving linear systems of equations, partial differential equations, nonlinear systems of ordinary differential equations, and Karmarkar's algorithm. Hardware requirements are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-8191(90)90155-3</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8191 |
ispartof | Parallel computing, 1990, Vol.16 (1), p.1-25 |
issn | 0167-8191 1872-7336 |
language | eng |
recordid | cdi_proquest_miscellaneous_25582137 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Associative memory Computer science control theory systems Exact sciences and technology Karmarkar's algorithm Linear systems of equations Ordinary and partial differential equations Table methods Theoretical computing |
title | Beyond massive parallelism: numerical computation using associative tables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20massive%20parallelism:%20numerical%20computation%20using%20associative%20tables&rft.jtitle=Parallel%20computing&rft.au=Douglas,%20Craig%20C.&rft.date=1990&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=0167-8191&rft.eissn=1872-7336&rft.coden=PACOEJ&rft_id=info:doi/10.1016/0167-8191(90)90155-3&rft_dat=%3Cproquest_cross%3E25582137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25582137&rft_id=info:pmid/&rft_els_id=0167819190901553&rfr_iscdi=true |