Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure

Aim Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. Methods Cardiopulmona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2021-04, Vol.231 (4), p.e13596-n/a
Hauptverfasser: Lankadeva, Yugeesh R., Evans, Roger G., Cochrane, Andrew D., Marino, Bruno, Hood, Sally G., McCall, Peter R., Iguchi, Naoya, Bellomo, Rinaldo, May, Clive N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e13596
container_title Acta Physiologica
container_volume 231
creator Lankadeva, Yugeesh R.
Evans, Roger G.
Cochrane, Andrew D.
Marino, Bruno
Hood, Sally G.
McCall, Peter R.
Iguchi, Naoya
Bellomo, Rinaldo
May, Clive N.
description Aim Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. Methods Cardiopulmonary bypass was established in eight instrumented sheep under isoflurane anaesthesia, at a target continuous pump flow of 80 mL·kg−1 min−1 and mean arterial pressure of 65 mmHg. We then tested the effects of simultaneously increasing target pump flow to 104 mL·kg−1 min−1 and mean arterial pressure to 80 mmHg with metaraminol (total dose 0.25‐3.75 mg). We also tested the effects of transitioning from continuous flow to partially pulsatile flow (pulse pressure ~15 mmHg). Results Compared with conscious sheep, at the lower target pump flow and mean arterial pressure, cardiopulmonary bypass was accompanied by reduced renal blood flow (6.8 ± 1.2 to 1.95 ± 0.76 mL·min−1 kg−1) and renal oxygen delivery (0.91 ± 0.18 to 0.24 ± 0.11 mL·O2 min−1 kg−1). There were profound reductions in cortical oxygen tension (PO2) (33 ± 13 to 6 ± 6 mmHg) and medullary PO2 (31 ± 12 to 8 ± 8 mmHg). Increasing target pump flow and mean arterial pressure increased renal blood flow (to 2.6 ± 1.0 mL·min−1 kg−1) and renal oxygen delivery (to 0.32 ± 0.13 mL·O2 min−1kg−1) and returned cortical PO2 to 58 ± 60 mmHg and medullary PO2 to 28 ± 16 mmHg; levels similar to those of conscious sheep. Partially pulsatile pump flow had no significant effects on renal perfusion or oxygenation. Conclusions Renal hypoxia during experimental CPB can be corrected by increasing target pump flow and mean arterial pressure within a clinically feasible range.
doi_str_mv 10.1111/apha.13596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2558092653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509223668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4366-d3d0e98d6873ba6a038c6e46d34e2f4cb94710100490e80fedcb3add708d5233</originalsourceid><addsrcrecordid>eNp9kU9LwzAYxosoOOYufoKAFxE686dN2-MY6oSBIruXNHnrOtomJq2zR7-5qRUPHswlT-CX502eJwguCV4Sv26F2YslYXHGT4IZSaI0JAnhp78ap-fBwrkDxphQwiJKZ8HnC7yDdaJGukQWWi-6yrke0H4w-qMSSPW2al8RfBiwVQNt5xEprKq06etGt8IOqBiMcA5VLXJ7AOPPXksLwoFCpm8MKmt9RKJVSNjO-3gPY8HPsXARnJWidrD42efB7v5ut96E26eHx_VqG8qIcR4qpjBkqeJpwgrBBWap5BBxxSKgZSSLLEoIJhhHGYYUl6BkwYRS_tcqpozNg-vJ1lj91oPr8qZyEupatKB7l9M4TnFGeTyiV3_Qg-6tj2akPEP9e1JP3UyUtNo5C2VufD4-jZzgfOwjH_vIv_vwMJngY1XD8A-Zr543q-nOF0lOj2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223668</pqid></control><display><type>article</type><title>Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure</title><source>Wiley-Blackwell Full Collection</source><creator>Lankadeva, Yugeesh R. ; Evans, Roger G. ; Cochrane, Andrew D. ; Marino, Bruno ; Hood, Sally G. ; McCall, Peter R. ; Iguchi, Naoya ; Bellomo, Rinaldo ; May, Clive N.</creator><creatorcontrib>Lankadeva, Yugeesh R. ; Evans, Roger G. ; Cochrane, Andrew D. ; Marino, Bruno ; Hood, Sally G. ; McCall, Peter R. ; Iguchi, Naoya ; Bellomo, Rinaldo ; May, Clive N.</creatorcontrib><description>Aim Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. Methods Cardiopulmonary bypass was established in eight instrumented sheep under isoflurane anaesthesia, at a target continuous pump flow of 80 mL·kg−1 min−1 and mean arterial pressure of 65 mmHg. We then tested the effects of simultaneously increasing target pump flow to 104 mL·kg−1 min−1 and mean arterial pressure to 80 mmHg with metaraminol (total dose 0.25‐3.75 mg). We also tested the effects of transitioning from continuous flow to partially pulsatile flow (pulse pressure ~15 mmHg). Results Compared with conscious sheep, at the lower target pump flow and mean arterial pressure, cardiopulmonary bypass was accompanied by reduced renal blood flow (6.8 ± 1.2 to 1.95 ± 0.76 mL·min−1 kg−1) and renal oxygen delivery (0.91 ± 0.18 to 0.24 ± 0.11 mL·O2 min−1 kg−1). There were profound reductions in cortical oxygen tension (PO2) (33 ± 13 to 6 ± 6 mmHg) and medullary PO2 (31 ± 12 to 8 ± 8 mmHg). Increasing target pump flow and mean arterial pressure increased renal blood flow (to 2.6 ± 1.0 mL·min−1 kg−1) and renal oxygen delivery (to 0.32 ± 0.13 mL·O2 min−1kg−1) and returned cortical PO2 to 58 ± 60 mmHg and medullary PO2 to 28 ± 16 mmHg; levels similar to those of conscious sheep. Partially pulsatile pump flow had no significant effects on renal perfusion or oxygenation. Conclusions Renal hypoxia during experimental CPB can be corrected by increasing target pump flow and mean arterial pressure within a clinically feasible range.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13596</identifier><language>eng</language><publisher>Stockholm: Wiley Subscription Services, Inc</publisher><subject>acute kidney injury ; Anesthesia ; Blood flow ; Blood pressure ; cardiopulmonary bypass ; Heart surgery ; Hypoxia ; Isoflurane ; Kidneys ; Oxygen tension ; Oxygenation ; Perfusion ; pulsatile pump flow ; renal blood flow ; renal oxygenation ; renal perfusion ; Sheep</subject><ispartof>Acta Physiologica, 2021-04, Vol.231 (4), p.e13596-n/a</ispartof><rights>2020 Scandinavian Physiological Society. Published by John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2021 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4366-d3d0e98d6873ba6a038c6e46d34e2f4cb94710100490e80fedcb3add708d5233</citedby><cites>FETCH-LOGICAL-c4366-d3d0e98d6873ba6a038c6e46d34e2f4cb94710100490e80fedcb3add708d5233</cites><orcidid>0000-0002-3589-9111 ; 0000-0002-9241-0757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13596$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13596$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lankadeva, Yugeesh R.</creatorcontrib><creatorcontrib>Evans, Roger G.</creatorcontrib><creatorcontrib>Cochrane, Andrew D.</creatorcontrib><creatorcontrib>Marino, Bruno</creatorcontrib><creatorcontrib>Hood, Sally G.</creatorcontrib><creatorcontrib>McCall, Peter R.</creatorcontrib><creatorcontrib>Iguchi, Naoya</creatorcontrib><creatorcontrib>Bellomo, Rinaldo</creatorcontrib><creatorcontrib>May, Clive N.</creatorcontrib><title>Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure</title><title>Acta Physiologica</title><description>Aim Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. Methods Cardiopulmonary bypass was established in eight instrumented sheep under isoflurane anaesthesia, at a target continuous pump flow of 80 mL·kg−1 min−1 and mean arterial pressure of 65 mmHg. We then tested the effects of simultaneously increasing target pump flow to 104 mL·kg−1 min−1 and mean arterial pressure to 80 mmHg with metaraminol (total dose 0.25‐3.75 mg). We also tested the effects of transitioning from continuous flow to partially pulsatile flow (pulse pressure ~15 mmHg). Results Compared with conscious sheep, at the lower target pump flow and mean arterial pressure, cardiopulmonary bypass was accompanied by reduced renal blood flow (6.8 ± 1.2 to 1.95 ± 0.76 mL·min−1 kg−1) and renal oxygen delivery (0.91 ± 0.18 to 0.24 ± 0.11 mL·O2 min−1 kg−1). There were profound reductions in cortical oxygen tension (PO2) (33 ± 13 to 6 ± 6 mmHg) and medullary PO2 (31 ± 12 to 8 ± 8 mmHg). Increasing target pump flow and mean arterial pressure increased renal blood flow (to 2.6 ± 1.0 mL·min−1 kg−1) and renal oxygen delivery (to 0.32 ± 0.13 mL·O2 min−1kg−1) and returned cortical PO2 to 58 ± 60 mmHg and medullary PO2 to 28 ± 16 mmHg; levels similar to those of conscious sheep. Partially pulsatile pump flow had no significant effects on renal perfusion or oxygenation. Conclusions Renal hypoxia during experimental CPB can be corrected by increasing target pump flow and mean arterial pressure within a clinically feasible range.</description><subject>acute kidney injury</subject><subject>Anesthesia</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>cardiopulmonary bypass</subject><subject>Heart surgery</subject><subject>Hypoxia</subject><subject>Isoflurane</subject><subject>Kidneys</subject><subject>Oxygen tension</subject><subject>Oxygenation</subject><subject>Perfusion</subject><subject>pulsatile pump flow</subject><subject>renal blood flow</subject><subject>renal oxygenation</subject><subject>renal perfusion</subject><subject>Sheep</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LwzAYxosoOOYufoKAFxE686dN2-MY6oSBIruXNHnrOtomJq2zR7-5qRUPHswlT-CX502eJwguCV4Sv26F2YslYXHGT4IZSaI0JAnhp78ap-fBwrkDxphQwiJKZ8HnC7yDdaJGukQWWi-6yrke0H4w-qMSSPW2al8RfBiwVQNt5xEprKq06etGt8IOqBiMcA5VLXJ7AOPPXksLwoFCpm8MKmt9RKJVSNjO-3gPY8HPsXARnJWidrD42efB7v5ut96E26eHx_VqG8qIcR4qpjBkqeJpwgrBBWap5BBxxSKgZSSLLEoIJhhHGYYUl6BkwYRS_tcqpozNg-vJ1lj91oPr8qZyEupatKB7l9M4TnFGeTyiV3_Qg-6tj2akPEP9e1JP3UyUtNo5C2VufD4-jZzgfOwjH_vIv_vwMJngY1XD8A-Zr543q-nOF0lOj2A</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Lankadeva, Yugeesh R.</creator><creator>Evans, Roger G.</creator><creator>Cochrane, Andrew D.</creator><creator>Marino, Bruno</creator><creator>Hood, Sally G.</creator><creator>McCall, Peter R.</creator><creator>Iguchi, Naoya</creator><creator>Bellomo, Rinaldo</creator><creator>May, Clive N.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3589-9111</orcidid><orcidid>https://orcid.org/0000-0002-9241-0757</orcidid></search><sort><creationdate>202104</creationdate><title>Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure</title><author>Lankadeva, Yugeesh R. ; Evans, Roger G. ; Cochrane, Andrew D. ; Marino, Bruno ; Hood, Sally G. ; McCall, Peter R. ; Iguchi, Naoya ; Bellomo, Rinaldo ; May, Clive N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4366-d3d0e98d6873ba6a038c6e46d34e2f4cb94710100490e80fedcb3add708d5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acute kidney injury</topic><topic>Anesthesia</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>cardiopulmonary bypass</topic><topic>Heart surgery</topic><topic>Hypoxia</topic><topic>Isoflurane</topic><topic>Kidneys</topic><topic>Oxygen tension</topic><topic>Oxygenation</topic><topic>Perfusion</topic><topic>pulsatile pump flow</topic><topic>renal blood flow</topic><topic>renal oxygenation</topic><topic>renal perfusion</topic><topic>Sheep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lankadeva, Yugeesh R.</creatorcontrib><creatorcontrib>Evans, Roger G.</creatorcontrib><creatorcontrib>Cochrane, Andrew D.</creatorcontrib><creatorcontrib>Marino, Bruno</creatorcontrib><creatorcontrib>Hood, Sally G.</creatorcontrib><creatorcontrib>McCall, Peter R.</creatorcontrib><creatorcontrib>Iguchi, Naoya</creatorcontrib><creatorcontrib>Bellomo, Rinaldo</creatorcontrib><creatorcontrib>May, Clive N.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lankadeva, Yugeesh R.</au><au>Evans, Roger G.</au><au>Cochrane, Andrew D.</au><au>Marino, Bruno</au><au>Hood, Sally G.</au><au>McCall, Peter R.</au><au>Iguchi, Naoya</au><au>Bellomo, Rinaldo</au><au>May, Clive N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure</atitle><jtitle>Acta Physiologica</jtitle><date>2021-04</date><risdate>2021</risdate><volume>231</volume><issue>4</issue><spage>e13596</spage><epage>n/a</epage><pages>e13596-n/a</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aim Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. Methods Cardiopulmonary bypass was established in eight instrumented sheep under isoflurane anaesthesia, at a target continuous pump flow of 80 mL·kg−1 min−1 and mean arterial pressure of 65 mmHg. We then tested the effects of simultaneously increasing target pump flow to 104 mL·kg−1 min−1 and mean arterial pressure to 80 mmHg with metaraminol (total dose 0.25‐3.75 mg). We also tested the effects of transitioning from continuous flow to partially pulsatile flow (pulse pressure ~15 mmHg). Results Compared with conscious sheep, at the lower target pump flow and mean arterial pressure, cardiopulmonary bypass was accompanied by reduced renal blood flow (6.8 ± 1.2 to 1.95 ± 0.76 mL·min−1 kg−1) and renal oxygen delivery (0.91 ± 0.18 to 0.24 ± 0.11 mL·O2 min−1 kg−1). There were profound reductions in cortical oxygen tension (PO2) (33 ± 13 to 6 ± 6 mmHg) and medullary PO2 (31 ± 12 to 8 ± 8 mmHg). Increasing target pump flow and mean arterial pressure increased renal blood flow (to 2.6 ± 1.0 mL·min−1 kg−1) and renal oxygen delivery (to 0.32 ± 0.13 mL·O2 min−1kg−1) and returned cortical PO2 to 58 ± 60 mmHg and medullary PO2 to 28 ± 16 mmHg; levels similar to those of conscious sheep. Partially pulsatile pump flow had no significant effects on renal perfusion or oxygenation. Conclusions Renal hypoxia during experimental CPB can be corrected by increasing target pump flow and mean arterial pressure within a clinically feasible range.</abstract><cop>Stockholm</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/apha.13596</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3589-9111</orcidid><orcidid>https://orcid.org/0000-0002-9241-0757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2021-04, Vol.231 (4), p.e13596-n/a
issn 1748-1708
1748-1716
language eng
recordid cdi_proquest_miscellaneous_2558092653
source Wiley-Blackwell Full Collection
subjects acute kidney injury
Anesthesia
Blood flow
Blood pressure
cardiopulmonary bypass
Heart surgery
Hypoxia
Isoflurane
Kidneys
Oxygen tension
Oxygenation
Perfusion
pulsatile pump flow
renal blood flow
renal oxygenation
renal perfusion
Sheep
title Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversal%20of%20renal%20tissue%20hypoxia%20during%20experimental%20cardiopulmonary%20bypass%20in%20sheep%20by%20increased%20pump%20flow%20and%20arterial%20pressure&rft.jtitle=Acta%20Physiologica&rft.au=Lankadeva,%20Yugeesh%20R.&rft.date=2021-04&rft.volume=231&rft.issue=4&rft.spage=e13596&rft.epage=n/a&rft.pages=e13596-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13596&rft_dat=%3Cproquest_cross%3E2509223668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223668&rft_id=info:pmid/&rfr_iscdi=true