Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries

Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2021-09, Vol.50 (33), p.11458-11465
Hauptverfasser: Chen, Qi, Liang, Qichen, Shu-Ang, He, Cui, Zhe, Liu, Qian, Zhu, Jinqi, Zou, Rujia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11465
container_issue 33
container_start_page 11458
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 50
creator Chen, Qi
Liang, Qichen
Shu-Ang, He
Cui, Zhe
Liu, Qian
Zhu, Jinqi
Zou, Rujia
description Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during the cycling process is still a challenge. Herein, a facile and efficient self-generated sacrificial template method is used to prepare Co0.85Se nanoparticles encapsulated in the inner wall of N-doped carbon matrix nanotubes (Co0.85Se@NCMT). In this strategy, the formation of stable Co–N/C and Se–C as well as enhancing the mechanical strength between active materials and N-doped carbon matrix nanotubes can critically affect the performance through suppressing the dissolution of Se/Co, decreasing energy band, promoting the shuttling of the ions/e− moving and mitigating the volume expansion during the charge–discharge process, which play a key role in improving the structure stability and electrochemical performance. Besides, Co0.85Se nanoparticles encapsulated in the robust carbon matrix inner wall can ensure good electron transfer and prevent the aggregation of nanoparticles, leading to superior electrochemical reversibility. Finally, carbon matrix nanotubes can provide sufficient space to effectively accommodate the volume changes of encapsulated Co0.85Se nanoparticles, thereby improving the cyclic stability. Based on the above advantages, as expected, the electrochemical investigations exhibited that the Co0.85Se@NCMT anode performs a stable reversible capacity of 462.9 mA h g−1 at a large current density of 5 A g−1 and a remarkable capacity retention of 99.5% after 800 cycles, suggesting its promising potential for the anode of LIBs.
doi_str_mv 10.1039/d1dt01899j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2558090417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558090417</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-1ca8d5d673fe7cce80e785e9c2faa45c6bf83012bb70979ecb3e288af8c1c0a33</originalsourceid><addsrcrecordid>eNpdj8tKxDAUhosoOI5ufIKAGzcdc-klXcrgDQZcqOvhND2dZkiTmqSMT-RzGlFcuPp_ON__wcmyS0ZXjIrmpmNdpEw2zf4oW7CirvOGi-L4r_PqNDsLYU8p57Tki-xz7ehKli9IJvBRK4OBoFUwhdlAxI5oS-KAKSx6cgBjiOuJ1dG7Hdq8c1NiFPjWWTJC9PqDWLAuzm0SHXQciIeonQWTFBF9D0qnnvAukN55MujdkE_p4PwIViExaaTnMU8j0kJMG43hPDvpwQS8-M1l9nZ_97p-zDfPD0_r200-cVbFnCmQXdlVteixVgolxVqW2CjeAxSlqtpeCsp429a0qRtUrUAuJfRSMUVBiGV2_eOdvHufMcTtqINCY8Cim8OWl6WkDS1YndCrf-jezT49-k1VohKCVVR8AQKof8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563633160</pqid></control><display><type>article</type><title>Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Qi ; Liang, Qichen ; Shu-Ang, He ; Cui, Zhe ; Liu, Qian ; Zhu, Jinqi ; Zou, Rujia</creator><creatorcontrib>Chen, Qi ; Liang, Qichen ; Shu-Ang, He ; Cui, Zhe ; Liu, Qian ; Zhu, Jinqi ; Zou, Rujia</creatorcontrib><description>Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during the cycling process is still a challenge. Herein, a facile and efficient self-generated sacrificial template method is used to prepare Co0.85Se nanoparticles encapsulated in the inner wall of N-doped carbon matrix nanotubes (Co0.85Se@NCMT). In this strategy, the formation of stable Co–N/C and Se–C as well as enhancing the mechanical strength between active materials and N-doped carbon matrix nanotubes can critically affect the performance through suppressing the dissolution of Se/Co, decreasing energy band, promoting the shuttling of the ions/e− moving and mitigating the volume expansion during the charge–discharge process, which play a key role in improving the structure stability and electrochemical performance. Besides, Co0.85Se nanoparticles encapsulated in the robust carbon matrix inner wall can ensure good electron transfer and prevent the aggregation of nanoparticles, leading to superior electrochemical reversibility. Finally, carbon matrix nanotubes can provide sufficient space to effectively accommodate the volume changes of encapsulated Co0.85Se nanoparticles, thereby improving the cyclic stability. Based on the above advantages, as expected, the electrochemical investigations exhibited that the Co0.85Se@NCMT anode performs a stable reversible capacity of 462.9 mA h g−1 at a large current density of 5 A g−1 and a remarkable capacity retention of 99.5% after 800 cycles, suggesting its promising potential for the anode of LIBs.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d1dt01899j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Carbon ; Chemical bonds ; Dissolution ; Electrochemical analysis ; Electron transfer ; Encapsulation ; Energy bands ; Lithium ; Lithium-ion batteries ; Nanoparticles ; Nanotubes ; Nitrogen ; Rechargeable batteries ; Selenides ; Selenium ; Structural stability</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2021-09, Vol.50 (33), p.11458-11465</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Liang, Qichen</creatorcontrib><creatorcontrib>Shu-Ang, He</creatorcontrib><creatorcontrib>Cui, Zhe</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Zhu, Jinqi</creatorcontrib><creatorcontrib>Zou, Rujia</creatorcontrib><title>Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during the cycling process is still a challenge. Herein, a facile and efficient self-generated sacrificial template method is used to prepare Co0.85Se nanoparticles encapsulated in the inner wall of N-doped carbon matrix nanotubes (Co0.85Se@NCMT). In this strategy, the formation of stable Co–N/C and Se–C as well as enhancing the mechanical strength between active materials and N-doped carbon matrix nanotubes can critically affect the performance through suppressing the dissolution of Se/Co, decreasing energy band, promoting the shuttling of the ions/e− moving and mitigating the volume expansion during the charge–discharge process, which play a key role in improving the structure stability and electrochemical performance. Besides, Co0.85Se nanoparticles encapsulated in the robust carbon matrix inner wall can ensure good electron transfer and prevent the aggregation of nanoparticles, leading to superior electrochemical reversibility. Finally, carbon matrix nanotubes can provide sufficient space to effectively accommodate the volume changes of encapsulated Co0.85Se nanoparticles, thereby improving the cyclic stability. Based on the above advantages, as expected, the electrochemical investigations exhibited that the Co0.85Se@NCMT anode performs a stable reversible capacity of 462.9 mA h g−1 at a large current density of 5 A g−1 and a remarkable capacity retention of 99.5% after 800 cycles, suggesting its promising potential for the anode of LIBs.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Dissolution</subject><subject>Electrochemical analysis</subject><subject>Electron transfer</subject><subject>Encapsulation</subject><subject>Energy bands</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Nitrogen</subject><subject>Rechargeable batteries</subject><subject>Selenides</subject><subject>Selenium</subject><subject>Structural stability</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj8tKxDAUhosoOI5ufIKAGzcdc-klXcrgDQZcqOvhND2dZkiTmqSMT-RzGlFcuPp_ON__wcmyS0ZXjIrmpmNdpEw2zf4oW7CirvOGi-L4r_PqNDsLYU8p57Tki-xz7ehKli9IJvBRK4OBoFUwhdlAxI5oS-KAKSx6cgBjiOuJ1dG7Hdq8c1NiFPjWWTJC9PqDWLAuzm0SHXQciIeonQWTFBF9D0qnnvAukN55MujdkE_p4PwIViExaaTnMU8j0kJMG43hPDvpwQS8-M1l9nZ_97p-zDfPD0_r200-cVbFnCmQXdlVteixVgolxVqW2CjeAxSlqtpeCsp429a0qRtUrUAuJfRSMUVBiGV2_eOdvHufMcTtqINCY8Cim8OWl6WkDS1YndCrf-jezT49-k1VohKCVVR8AQKof8w</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>Chen, Qi</creator><creator>Liang, Qichen</creator><creator>Shu-Ang, He</creator><creator>Cui, Zhe</creator><creator>Liu, Qian</creator><creator>Zhu, Jinqi</creator><creator>Zou, Rujia</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210907</creationdate><title>Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries</title><author>Chen, Qi ; Liang, Qichen ; Shu-Ang, He ; Cui, Zhe ; Liu, Qian ; Zhu, Jinqi ; Zou, Rujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-1ca8d5d673fe7cce80e785e9c2faa45c6bf83012bb70979ecb3e288af8c1c0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Dissolution</topic><topic>Electrochemical analysis</topic><topic>Electron transfer</topic><topic>Encapsulation</topic><topic>Energy bands</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Nitrogen</topic><topic>Rechargeable batteries</topic><topic>Selenides</topic><topic>Selenium</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Liang, Qichen</creatorcontrib><creatorcontrib>Shu-Ang, He</creatorcontrib><creatorcontrib>Cui, Zhe</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Zhu, Jinqi</creatorcontrib><creatorcontrib>Zou, Rujia</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qi</au><au>Liang, Qichen</au><au>Shu-Ang, He</au><au>Cui, Zhe</au><au>Liu, Qian</au><au>Zhu, Jinqi</au><au>Zou, Rujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2021-09-07</date><risdate>2021</risdate><volume>50</volume><issue>33</issue><spage>11458</spage><epage>11465</epage><pages>11458-11465</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during the cycling process is still a challenge. Herein, a facile and efficient self-generated sacrificial template method is used to prepare Co0.85Se nanoparticles encapsulated in the inner wall of N-doped carbon matrix nanotubes (Co0.85Se@NCMT). In this strategy, the formation of stable Co–N/C and Se–C as well as enhancing the mechanical strength between active materials and N-doped carbon matrix nanotubes can critically affect the performance through suppressing the dissolution of Se/Co, decreasing energy band, promoting the shuttling of the ions/e− moving and mitigating the volume expansion during the charge–discharge process, which play a key role in improving the structure stability and electrochemical performance. Besides, Co0.85Se nanoparticles encapsulated in the robust carbon matrix inner wall can ensure good electron transfer and prevent the aggregation of nanoparticles, leading to superior electrochemical reversibility. Finally, carbon matrix nanotubes can provide sufficient space to effectively accommodate the volume changes of encapsulated Co0.85Se nanoparticles, thereby improving the cyclic stability. Based on the above advantages, as expected, the electrochemical investigations exhibited that the Co0.85Se@NCMT anode performs a stable reversible capacity of 462.9 mA h g−1 at a large current density of 5 A g−1 and a remarkable capacity retention of 99.5% after 800 cycles, suggesting its promising potential for the anode of LIBs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1dt01899j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2021-09, Vol.50 (33), p.11458-11465
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2558090417
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Anodes
Carbon
Chemical bonds
Dissolution
Electrochemical analysis
Electron transfer
Encapsulation
Energy bands
Lithium
Lithium-ion batteries
Nanoparticles
Nanotubes
Nitrogen
Rechargeable batteries
Selenides
Selenium
Structural stability
title Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co0.85Se%20particles%20encapsulated%20in%20the%20inner%20wall%20of%20nitrogen-doped%20carbon%20matrix%20nanotubes%20with%20rational%20interfacial%20bonds%20for%20high-performance%20lithium-ion%20batteries&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Chen,%20Qi&rft.date=2021-09-07&rft.volume=50&rft.issue=33&rft.spage=11458&rft.epage=11465&rft.pages=11458-11465&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d1dt01899j&rft_dat=%3Cproquest%3E2558090417%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563633160&rft_id=info:pmid/&rfr_iscdi=true