Decoding disease: from genomes to networks to phenotypes
Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and ph...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Genetics 2021-12, Vol.22 (12), p.774-790 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 790 |
---|---|
container_issue | 12 |
container_start_page | 774 |
container_title | Nature reviews. Genetics |
container_volume | 22 |
creator | Wong, Aaron K. Sealfon, Rachel S. G. Theesfeld, Chandra L. Troyanskaya, Olga G. |
description | Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.
In this Review, the authors discuss computational methods for interpreting the molecular and clinical effects of genetic variants. They focus on methods leveraging machine learning, including those that characterize the effects on wider molecular networks. |
doi_str_mv | 10.1038/s41576-021-00389-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2557550560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A682673354</galeid><sourcerecordid>A682673354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-1ea4b08cd444c0198963584a73d75bffddc13a2b33bc60b7fc65aea2028661b13</originalsourceid><addsrcrecordid>eNp9kttq3DAQhkVpaQ7tC_SiGAqhvXAqWSdv70J6CgQCPVwLWR57ndrSViOTzdtHm02TbihFF5oZff8gjX5CXjF6zCiv36NgUquSVqykOV-U6ydknwm9SZV4eh9LtUcOEC8pZYpp_pzsccGzVsp9Un8EF9rB90U7IFiED0UXw1T04MMEWKRQeEhXIf66jVfLXE_XK8AX5FlnR4SXd_sh-fn504_Tr-X5xZez05Pz0knJUsnAiobWrhVCOMoW9UJxWQureatl03Vt6xi3VcN54xRtdOeUtGArWtVKsYbxQ_J223cVw-8ZMJlpQAfjaD2EGU0lpZYyv5Fm9M0j9DLM0efbZWqhFeO0Zg9Ub0cwg-9CitZtmpoTVVdKcy5Fpo7_QeXVwjS44KEbcn1H8G5HkJkE69TbGdGcff-2yx79xS7BjmmJYZzTEDzugtUWdDEgRujMKg6TjdeGUbPxgNl6wGQPmFsPmHUWvb4bw9xM0N5L_nx6BvgWwHzke4gPc_pP2xvBMrgb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597613081</pqid></control><display><type>article</type><title>Decoding disease: from genomes to networks to phenotypes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Wong, Aaron K. ; Sealfon, Rachel S. G. ; Theesfeld, Chandra L. ; Troyanskaya, Olga G.</creator><creatorcontrib>Wong, Aaron K. ; Sealfon, Rachel S. G. ; Theesfeld, Chandra L. ; Troyanskaya, Olga G.</creatorcontrib><description>Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.
In this Review, the authors discuss computational methods for interpreting the molecular and clinical effects of genetic variants. They focus on methods leveraging machine learning, including those that characterize the effects on wider molecular networks.</description><identifier>ISSN: 1471-0056</identifier><identifier>EISSN: 1471-0064</identifier><identifier>DOI: 10.1038/s41576-021-00389-x</identifier><identifier>PMID: 34341555</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2114 ; 631/208/2489/144 ; Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Computer applications ; DNA sequencing ; Epigenomics ; Gene Expression ; Gene Function ; Gene Regulatory Networks ; Genetic diversity ; Genetic Predisposition to Disease ; Genetic susceptibility ; Genetic Variation ; Genome, Human ; Genomes ; Genomics ; Health aspects ; Human Genetics ; Humans ; Learning algorithms ; Machine Learning ; Mathematical models ; Models, Genetic ; Mutation ; Nucleotide sequence ; Nucleotide sequencing ; Phenotype ; Phenotypes ; Review Article</subject><ispartof>Nature reviews. Genetics, 2021-12, Vol.22 (12), p.774-790</ispartof><rights>Springer Nature Limited 2021</rights><rights>2021. Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-1ea4b08cd444c0198963584a73d75bffddc13a2b33bc60b7fc65aea2028661b13</citedby><cites>FETCH-LOGICAL-c551t-1ea4b08cd444c0198963584a73d75bffddc13a2b33bc60b7fc65aea2028661b13</cites><orcidid>0000-0002-5676-5737 ; 0000-0002-7294-0646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41576-021-00389-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41576-021-00389-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34341555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Aaron K.</creatorcontrib><creatorcontrib>Sealfon, Rachel S. G.</creatorcontrib><creatorcontrib>Theesfeld, Chandra L.</creatorcontrib><creatorcontrib>Troyanskaya, Olga G.</creatorcontrib><title>Decoding disease: from genomes to networks to phenotypes</title><title>Nature reviews. Genetics</title><addtitle>Nat Rev Genet</addtitle><addtitle>Nat Rev Genet</addtitle><description>Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.
In this Review, the authors discuss computational methods for interpreting the molecular and clinical effects of genetic variants. They focus on methods leveraging machine learning, including those that characterize the effects on wider molecular networks.</description><subject>631/114/2114</subject><subject>631/208/2489/144</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Computer applications</subject><subject>DNA sequencing</subject><subject>Epigenomics</subject><subject>Gene Expression</subject><subject>Gene Function</subject><subject>Gene Regulatory Networks</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic susceptibility</subject><subject>Genetic Variation</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Review Article</subject><issn>1471-0056</issn><issn>1471-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kttq3DAQhkVpaQ7tC_SiGAqhvXAqWSdv70J6CgQCPVwLWR57ndrSViOTzdtHm02TbihFF5oZff8gjX5CXjF6zCiv36NgUquSVqykOV-U6ydknwm9SZV4eh9LtUcOEC8pZYpp_pzsccGzVsp9Un8EF9rB90U7IFiED0UXw1T04MMEWKRQeEhXIf66jVfLXE_XK8AX5FlnR4SXd_sh-fn504_Tr-X5xZez05Pz0knJUsnAiobWrhVCOMoW9UJxWQureatl03Vt6xi3VcN54xRtdOeUtGArWtVKsYbxQ_J223cVw-8ZMJlpQAfjaD2EGU0lpZYyv5Fm9M0j9DLM0efbZWqhFeO0Zg9Ub0cwg-9CitZtmpoTVVdKcy5Fpo7_QeXVwjS44KEbcn1H8G5HkJkE69TbGdGcff-2yx79xS7BjmmJYZzTEDzugtUWdDEgRujMKg6TjdeGUbPxgNl6wGQPmFsPmHUWvb4bw9xM0N5L_nx6BvgWwHzke4gPc_pP2xvBMrgb</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wong, Aaron K.</creator><creator>Sealfon, Rachel S. G.</creator><creator>Theesfeld, Chandra L.</creator><creator>Troyanskaya, Olga G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5676-5737</orcidid><orcidid>https://orcid.org/0000-0002-7294-0646</orcidid></search><sort><creationdate>20211201</creationdate><title>Decoding disease: from genomes to networks to phenotypes</title><author>Wong, Aaron K. ; Sealfon, Rachel S. G. ; Theesfeld, Chandra L. ; Troyanskaya, Olga G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-1ea4b08cd444c0198963584a73d75bffddc13a2b33bc60b7fc65aea2028661b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/2114</topic><topic>631/208/2489/144</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Computer applications</topic><topic>DNA sequencing</topic><topic>Epigenomics</topic><topic>Gene Expression</topic><topic>Gene Function</topic><topic>Gene Regulatory Networks</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic susceptibility</topic><topic>Genetic Variation</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Aaron K.</creatorcontrib><creatorcontrib>Sealfon, Rachel S. G.</creatorcontrib><creatorcontrib>Theesfeld, Chandra L.</creatorcontrib><creatorcontrib>Troyanskaya, Olga G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Aaron K.</au><au>Sealfon, Rachel S. G.</au><au>Theesfeld, Chandra L.</au><au>Troyanskaya, Olga G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding disease: from genomes to networks to phenotypes</atitle><jtitle>Nature reviews. Genetics</jtitle><stitle>Nat Rev Genet</stitle><addtitle>Nat Rev Genet</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>774</spage><epage>790</epage><pages>774-790</pages><issn>1471-0056</issn><eissn>1471-0064</eissn><abstract>Interpreting the effects of genetic variants is key to understanding individual susceptibility to disease and designing personalized therapeutic approaches. Modern experimental technologies are enabling the generation of massive compendia of human genome sequence data and associated molecular and phenotypic traits, together with genome-scale expression, epigenomics and other functional genomic data. Integrative computational models can leverage these data to understand variant impact, elucidate the effect of dysregulated genes on biological pathways in specific disease and tissue contexts, and interpret disease risk beyond what is feasible with experiments alone. In this Review, we discuss recent developments in machine learning algorithms for genome interpretation and for integrative molecular-level modelling of cells, tissues and organs relevant to disease. More specifically, we highlight existing methods and key challenges and opportunities in identifying specific disease-causing genetic variants and linking them to molecular pathways and, ultimately, to disease phenotypes.
In this Review, the authors discuss computational methods for interpreting the molecular and clinical effects of genetic variants. They focus on methods leveraging machine learning, including those that characterize the effects on wider molecular networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34341555</pmid><doi>10.1038/s41576-021-00389-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5676-5737</orcidid><orcidid>https://orcid.org/0000-0002-7294-0646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0056 |
ispartof | Nature reviews. Genetics, 2021-12, Vol.22 (12), p.774-790 |
issn | 1471-0056 1471-0064 |
language | eng |
recordid | cdi_proquest_miscellaneous_2557550560 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/114/2114 631/208/2489/144 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Computer applications DNA sequencing Epigenomics Gene Expression Gene Function Gene Regulatory Networks Genetic diversity Genetic Predisposition to Disease Genetic susceptibility Genetic Variation Genome, Human Genomes Genomics Health aspects Human Genetics Humans Learning algorithms Machine Learning Mathematical models Models, Genetic Mutation Nucleotide sequence Nucleotide sequencing Phenotype Phenotypes Review Article |
title | Decoding disease: from genomes to networks to phenotypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20disease:%20from%20genomes%20to%20networks%20to%20phenotypes&rft.jtitle=Nature%20reviews.%20Genetics&rft.au=Wong,%20Aaron%20K.&rft.date=2021-12-01&rft.volume=22&rft.issue=12&rft.spage=774&rft.epage=790&rft.pages=774-790&rft.issn=1471-0056&rft.eissn=1471-0064&rft_id=info:doi/10.1038/s41576-021-00389-x&rft_dat=%3Cgale_proqu%3EA682673354%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597613081&rft_id=info:pmid/34341555&rft_galeid=A682673354&rfr_iscdi=true |