Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery

Aqueous electrolytes offer major advantages in safe battery operation, green economy, and low production cost for advanced battery technology. However, strong water activity in aqueous electrolytes provokes a hydrogen evolution reaction and parasitic passivation on electrodes, leaving poor ion‐trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-09, Vol.33 (38), p.e2102415-n/a
Hauptverfasser: Yang, Huijun, Qiao, Yu, Chang, Zhi, Deng, Han, Zhu, Xingyu, Zhu, Ruijie, Xiong, Zetao, He, Ping, Zhou, Haoshen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e2102415
container_title Advanced materials (Weinheim)
container_volume 33
creator Yang, Huijun
Qiao, Yu
Chang, Zhi
Deng, Han
Zhu, Xingyu
Zhu, Ruijie
Xiong, Zetao
He, Ping
Zhou, Haoshen
description Aqueous electrolytes offer major advantages in safe battery operation, green economy, and low production cost for advanced battery technology. However, strong water activity in aqueous electrolytes provokes a hydrogen evolution reaction and parasitic passivation on electrodes, leaving poor ion‐transport in the electrolyte/electrode interface. Herein, a zeolite molecular sieve‐modified (zeolite‐modified) aqueous electrolyte is proposed to reduce water activity and its side‐reaction. First, Raman spectroscopy reveals a highly aggressive solvation configuration and significantly suppressed water activity toward single water molecule. Then less hydrogen evolution and anti‐corrosion ability of zeolite‐modified electrolyte by simulation and electrochemical characterizations are identified. Consequently, a zinc (Zn) anode involves less side‐reaction, and develops into a compact deposition morphology, as proved by space‐resolution characterizations. Moreover, zeolite‐modified electrolyte favors cyclic life of symmetric Zn||Zn cells to 4765 h at 0.8 mA cm−2, zinc‐VO2 coin cell to 3000 cycles, and pouch cell to 100 cycles. Finally, the mature production technique and low‐cost of zeolite molecular sieve would tremendously favor the future scale‐up application in engineering aspect. A zeolite molecular sieve is demonstrated to reduce water activity and is employed for a high‐performance zinc anode. Spectroscopy and simulation characterizations identify that the zeolite‐molecular‐sieve‐modified electrolyte renders a highly aggressive solvation sheath and restrains the activity of water molecules. Benefitting from the regulation, the fabricated zinc anode demon strates a compact deposition and superior stability with less side‐product generation.
doi_str_mv 10.1002/adma.202102415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2557543781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574660925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4165-8d48f3141d1f57ad022c33462ed071e6df5ed6ef94cc9675b119b30c3576e8563</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI5uXQfcuOmYpEnaLOv4CxVhVITZlDS9HTP0Z0zbke58BJ_RJ7HDiIIbV5cL33c4HISOKZlQQtiZzko9YYRRwjgVO2hEBaMeJ0rsohFRvvCU5OE-OmiaJSFESSJHCGaQdcZWC_ysW3A4Mq1d27bHaY_nUBe2BXxXF2C6Qjv8YGE9_FCmTleA89rhuK4Wn-8fsc0Bz8C8aLcAnRaA57Yy-Fy3Q2p_iPZyXTRw9H3H6Onq8nF648X317fTKPYMp1J4YcbD3KecZjQXgc4IY8b3uWSQkYCCzHIBmYRccWOUDERKqUp9YnwRSAiF9MfodJu7cvVrB02blLYxUBRD27prEiZEILgfhHRAT_6gy7pz1dBuoAIuJVFMDNRkSxlXN42DPFk5W2rXJ5Qkm9WTzerJz-qDoLbCmy2g_4dOoou76Nf9AtPghgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574660925</pqid></control><display><type>article</type><title>Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Huijun ; Qiao, Yu ; Chang, Zhi ; Deng, Han ; Zhu, Xingyu ; Zhu, Ruijie ; Xiong, Zetao ; He, Ping ; Zhou, Haoshen</creator><creatorcontrib>Yang, Huijun ; Qiao, Yu ; Chang, Zhi ; Deng, Han ; Zhu, Xingyu ; Zhu, Ruijie ; Xiong, Zetao ; He, Ping ; Zhou, Haoshen</creatorcontrib><description>Aqueous electrolytes offer major advantages in safe battery operation, green economy, and low production cost for advanced battery technology. However, strong water activity in aqueous electrolytes provokes a hydrogen evolution reaction and parasitic passivation on electrodes, leaving poor ion‐transport in the electrolyte/electrode interface. Herein, a zeolite molecular sieve‐modified (zeolite‐modified) aqueous electrolyte is proposed to reduce water activity and its side‐reaction. First, Raman spectroscopy reveals a highly aggressive solvation configuration and significantly suppressed water activity toward single water molecule. Then less hydrogen evolution and anti‐corrosion ability of zeolite‐modified electrolyte by simulation and electrochemical characterizations are identified. Consequently, a zinc (Zn) anode involves less side‐reaction, and develops into a compact deposition morphology, as proved by space‐resolution characterizations. Moreover, zeolite‐modified electrolyte favors cyclic life of symmetric Zn||Zn cells to 4765 h at 0.8 mA cm−2, zinc‐VO2 coin cell to 3000 cycles, and pouch cell to 100 cycles. Finally, the mature production technique and low‐cost of zeolite molecular sieve would tremendously favor the future scale‐up application in engineering aspect. A zeolite molecular sieve is demonstrated to reduce water activity and is employed for a high‐performance zinc anode. Spectroscopy and simulation characterizations identify that the zeolite‐molecular‐sieve‐modified electrolyte renders a highly aggressive solvation sheath and restrains the activity of water molecules. Benefitting from the regulation, the fabricated zinc anode demon strates a compact deposition and superior stability with less side‐product generation.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202102415</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous electrolyte ; Aqueous electrolytes ; Electrolytes ; Electrolytic cells ; Hydrogen evolution reactions ; Materials science ; Molecular sieves ; Morphology ; Production costs ; Raman spectroscopy ; Rechargeable batteries ; reducing water activity ; Solvation ; Water activity ; Water chemistry ; zeolite molecular sieve ; Zeolites ; Zinc ; zinc batteries ; zinc electrodeposition</subject><ispartof>Advanced materials (Weinheim), 2021-09, Vol.33 (38), p.e2102415-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4165-8d48f3141d1f57ad022c33462ed071e6df5ed6ef94cc9675b119b30c3576e8563</citedby><cites>FETCH-LOGICAL-c4165-8d48f3141d1f57ad022c33462ed071e6df5ed6ef94cc9675b119b30c3576e8563</cites><orcidid>0000-0001-8112-3739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202102415$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202102415$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Yang, Huijun</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Chang, Zhi</creatorcontrib><creatorcontrib>Deng, Han</creatorcontrib><creatorcontrib>Zhu, Xingyu</creatorcontrib><creatorcontrib>Zhu, Ruijie</creatorcontrib><creatorcontrib>Xiong, Zetao</creatorcontrib><creatorcontrib>He, Ping</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><title>Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery</title><title>Advanced materials (Weinheim)</title><description>Aqueous electrolytes offer major advantages in safe battery operation, green economy, and low production cost for advanced battery technology. However, strong water activity in aqueous electrolytes provokes a hydrogen evolution reaction and parasitic passivation on electrodes, leaving poor ion‐transport in the electrolyte/electrode interface. Herein, a zeolite molecular sieve‐modified (zeolite‐modified) aqueous electrolyte is proposed to reduce water activity and its side‐reaction. First, Raman spectroscopy reveals a highly aggressive solvation configuration and significantly suppressed water activity toward single water molecule. Then less hydrogen evolution and anti‐corrosion ability of zeolite‐modified electrolyte by simulation and electrochemical characterizations are identified. Consequently, a zinc (Zn) anode involves less side‐reaction, and develops into a compact deposition morphology, as proved by space‐resolution characterizations. Moreover, zeolite‐modified electrolyte favors cyclic life of symmetric Zn||Zn cells to 4765 h at 0.8 mA cm−2, zinc‐VO2 coin cell to 3000 cycles, and pouch cell to 100 cycles. Finally, the mature production technique and low‐cost of zeolite molecular sieve would tremendously favor the future scale‐up application in engineering aspect. A zeolite molecular sieve is demonstrated to reduce water activity and is employed for a high‐performance zinc anode. Spectroscopy and simulation characterizations identify that the zeolite‐molecular‐sieve‐modified electrolyte renders a highly aggressive solvation sheath and restrains the activity of water molecules. Benefitting from the regulation, the fabricated zinc anode demon strates a compact deposition and superior stability with less side‐product generation.</description><subject>aqueous electrolyte</subject><subject>Aqueous electrolytes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Hydrogen evolution reactions</subject><subject>Materials science</subject><subject>Molecular sieves</subject><subject>Morphology</subject><subject>Production costs</subject><subject>Raman spectroscopy</subject><subject>Rechargeable batteries</subject><subject>reducing water activity</subject><subject>Solvation</subject><subject>Water activity</subject><subject>Water chemistry</subject><subject>zeolite molecular sieve</subject><subject>Zeolites</subject><subject>Zinc</subject><subject>zinc batteries</subject><subject>zinc electrodeposition</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI5uXQfcuOmYpEnaLOv4CxVhVITZlDS9HTP0Z0zbke58BJ_RJ7HDiIIbV5cL33c4HISOKZlQQtiZzko9YYRRwjgVO2hEBaMeJ0rsohFRvvCU5OE-OmiaJSFESSJHCGaQdcZWC_ysW3A4Mq1d27bHaY_nUBe2BXxXF2C6Qjv8YGE9_FCmTleA89rhuK4Wn-8fsc0Bz8C8aLcAnRaA57Yy-Fy3Q2p_iPZyXTRw9H3H6Onq8nF648X317fTKPYMp1J4YcbD3KecZjQXgc4IY8b3uWSQkYCCzHIBmYRccWOUDERKqUp9YnwRSAiF9MfodJu7cvVrB02blLYxUBRD27prEiZEILgfhHRAT_6gy7pz1dBuoAIuJVFMDNRkSxlXN42DPFk5W2rXJ5Qkm9WTzerJz-qDoLbCmy2g_4dOoou76Nf9AtPghgk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yang, Huijun</creator><creator>Qiao, Yu</creator><creator>Chang, Zhi</creator><creator>Deng, Han</creator><creator>Zhu, Xingyu</creator><creator>Zhu, Ruijie</creator><creator>Xiong, Zetao</creator><creator>He, Ping</creator><creator>Zhou, Haoshen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8112-3739</orcidid></search><sort><creationdate>20210901</creationdate><title>Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery</title><author>Yang, Huijun ; Qiao, Yu ; Chang, Zhi ; Deng, Han ; Zhu, Xingyu ; Zhu, Ruijie ; Xiong, Zetao ; He, Ping ; Zhou, Haoshen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4165-8d48f3141d1f57ad022c33462ed071e6df5ed6ef94cc9675b119b30c3576e8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aqueous electrolyte</topic><topic>Aqueous electrolytes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Hydrogen evolution reactions</topic><topic>Materials science</topic><topic>Molecular sieves</topic><topic>Morphology</topic><topic>Production costs</topic><topic>Raman spectroscopy</topic><topic>Rechargeable batteries</topic><topic>reducing water activity</topic><topic>Solvation</topic><topic>Water activity</topic><topic>Water chemistry</topic><topic>zeolite molecular sieve</topic><topic>Zeolites</topic><topic>Zinc</topic><topic>zinc batteries</topic><topic>zinc electrodeposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huijun</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Chang, Zhi</creatorcontrib><creatorcontrib>Deng, Han</creatorcontrib><creatorcontrib>Zhu, Xingyu</creatorcontrib><creatorcontrib>Zhu, Ruijie</creatorcontrib><creatorcontrib>Xiong, Zetao</creatorcontrib><creatorcontrib>He, Ping</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huijun</au><au>Qiao, Yu</au><au>Chang, Zhi</au><au>Deng, Han</au><au>Zhu, Xingyu</au><au>Zhu, Ruijie</au><au>Xiong, Zetao</au><au>He, Ping</au><au>Zhou, Haoshen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>38</issue><spage>e2102415</spage><epage>n/a</epage><pages>e2102415-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Aqueous electrolytes offer major advantages in safe battery operation, green economy, and low production cost for advanced battery technology. However, strong water activity in aqueous electrolytes provokes a hydrogen evolution reaction and parasitic passivation on electrodes, leaving poor ion‐transport in the electrolyte/electrode interface. Herein, a zeolite molecular sieve‐modified (zeolite‐modified) aqueous electrolyte is proposed to reduce water activity and its side‐reaction. First, Raman spectroscopy reveals a highly aggressive solvation configuration and significantly suppressed water activity toward single water molecule. Then less hydrogen evolution and anti‐corrosion ability of zeolite‐modified electrolyte by simulation and electrochemical characterizations are identified. Consequently, a zinc (Zn) anode involves less side‐reaction, and develops into a compact deposition morphology, as proved by space‐resolution characterizations. Moreover, zeolite‐modified electrolyte favors cyclic life of symmetric Zn||Zn cells to 4765 h at 0.8 mA cm−2, zinc‐VO2 coin cell to 3000 cycles, and pouch cell to 100 cycles. Finally, the mature production technique and low‐cost of zeolite molecular sieve would tremendously favor the future scale‐up application in engineering aspect. A zeolite molecular sieve is demonstrated to reduce water activity and is employed for a high‐performance zinc anode. Spectroscopy and simulation characterizations identify that the zeolite‐molecular‐sieve‐modified electrolyte renders a highly aggressive solvation sheath and restrains the activity of water molecules. Benefitting from the regulation, the fabricated zinc anode demon strates a compact deposition and superior stability with less side‐product generation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202102415</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8112-3739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-09, Vol.33 (38), p.e2102415-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2557543781
source Wiley Online Library Journals Frontfile Complete
subjects aqueous electrolyte
Aqueous electrolytes
Electrolytes
Electrolytic cells
Hydrogen evolution reactions
Materials science
Molecular sieves
Morphology
Production costs
Raman spectroscopy
Rechargeable batteries
reducing water activity
Solvation
Water activity
Water chemistry
zeolite molecular sieve
Zeolites
Zinc
zinc batteries
zinc electrodeposition
title Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long‐Life Rechargeable Zinc Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20Water%20Activity%20by%20Zeolite%20Molecular%20Sieve%20Membrane%20for%20Long%E2%80%90Life%20Rechargeable%20Zinc%20Battery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yang,%20Huijun&rft.date=2021-09-01&rft.volume=33&rft.issue=38&rft.spage=e2102415&rft.epage=n/a&rft.pages=e2102415-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202102415&rft_dat=%3Cproquest_cross%3E2574660925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574660925&rft_id=info:pmid/&rfr_iscdi=true