Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress

Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant 2021-12, Vol.14 (12), p.2000-2014
Hauptverfasser: Yang, Yongqing, Han, Xiuli, Ma, Liang, Wu, Yujiao, Liu, Xiao, Fu, Haiqi, Liu, Guoyong, Lei, Xiaoguang, Guo, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2014
container_issue 12
container_start_page 2000
container_title Molecular plant
container_volume 14
creator Yang, Yongqing
Han, Xiuli
Ma, Liang
Wu, Yujiao
Liu, Xiao
Fu, Haiqi
Liu, Guoyong
Lei, Xiaoguang
Guo, Yan
description Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions. Maintaining ion homeostasis under salt stress requires coordinated activation of two central regulators: PM H+-ATPase and Na+/H+ antiporter. This study reveals that the endogenous small molecules phosphatidylinositol and 4-phosphate phosphatidylinositol regulate the activities of these regulators to maintain ion homeostasis in Arabidopsis under salt stress.
doi_str_mv 10.1016/j.molp.2021.07.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2557536697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1674205221003117</els_id><sourcerecordid>2557536697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3150-3246fb640e4a634d74c4ea3516b801f0e23ae6f679f277fc1336f5fe02227c63</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhSMEYoaBF2CBvESqkvFPYjcSm2r4KdIIWHRvuc4NdeXEwdep1PebB8OhM6wQC8v3Xp9zruSvKN4yWjHK5O2xGoKfKk45q6iqKKfPimumGl62a6me51qquuS04VfFK8QjpZKupXhZXIlaiHbdNtfFw8fzaAZniT2Y8ScgCT2ZDgGng0muO3s3BnQpeGLG7t8Pdfk0BuLhBB7JELrZL_12VW52PwzCH_s3s7rdrnKZ3BRigkiMTe7kkst7UyCDcWPKh7gwkkMYIGAy6JDk0SaavevCtLTz2GUvGp8IpgiIr4sXvfEIbx7vm2L3-dPublvef__y9W5zX1rBGloKXst-L2sKtZGi7lRtazCiYXK_pqynwIUB2UvV9lyp3jIhZN_0QDnnykpxU7y_xE4x_JoBkx4cWvDejBBm1LxpVCOkbFWW8ovUxoAYoddTdIOJZ82oXuDpo17g6QWepkpneNn07jF_3g_Q_bU80cqCDxdB_mQ4OYgarYPRQuci2KS74P6X_xvFXq--</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557536697</pqid></control><display><type>article</type><title>Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Yongqing ; Han, Xiuli ; Ma, Liang ; Wu, Yujiao ; Liu, Xiao ; Fu, Haiqi ; Liu, Guoyong ; Lei, Xiaoguang ; Guo, Yan</creator><creatorcontrib>Yang, Yongqing ; Han, Xiuli ; Ma, Liang ; Wu, Yujiao ; Liu, Xiao ; Fu, Haiqi ; Liu, Guoyong ; Lei, Xiaoguang ; Guo, Yan</creatorcontrib><description>Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions. Maintaining ion homeostasis under salt stress requires coordinated activation of two central regulators: PM H+-ATPase and Na+/H+ antiporter. This study reveals that the endogenous small molecules phosphatidylinositol and 4-phosphate phosphatidylinositol regulate the activities of these regulators to maintain ion homeostasis in Arabidopsis under salt stress.</description><identifier>ISSN: 1674-2052</identifier><identifier>EISSN: 1752-9867</identifier><identifier>DOI: 10.1016/j.molp.2021.07.020</identifier><identifier>PMID: 34339895</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>1-Phosphatidylinositol 4-Kinase - genetics ; 1-Phosphatidylinositol 4-Kinase - metabolism ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; ATP Binding Cassette Transporter, Subfamily G - genetics ; ATP Binding Cassette Transporter, Subfamily G - metabolism ; Cell Membrane - metabolism ; endogenous small molecules ; H+-ATPase ; Homeostasis ; Ion Transport ; Mutation ; Na+/H+ antiporter ; Phosphatidylinositol Phosphates - metabolism ; Phosphatidylinositols - metabolism ; Proton-Translocating ATPases - metabolism ; salt stress ; Salt Tolerance ; Sodium - metabolism ; Sodium-Hydrogen Exchangers - metabolism</subject><ispartof>Molecular plant, 2021-12, Vol.14 (12), p.2000-2014</ispartof><rights>2021 The Author</rights><rights>Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3150-3246fb640e4a634d74c4ea3516b801f0e23ae6f679f277fc1336f5fe02227c63</citedby><cites>FETCH-LOGICAL-c3150-3246fb640e4a634d74c4ea3516b801f0e23ae6f679f277fc1336f5fe02227c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34339895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yongqing</creatorcontrib><creatorcontrib>Han, Xiuli</creatorcontrib><creatorcontrib>Ma, Liang</creatorcontrib><creatorcontrib>Wu, Yujiao</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Fu, Haiqi</creatorcontrib><creatorcontrib>Liu, Guoyong</creatorcontrib><creatorcontrib>Lei, Xiaoguang</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><title>Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress</title><title>Molecular plant</title><addtitle>Mol Plant</addtitle><description>Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions. Maintaining ion homeostasis under salt stress requires coordinated activation of two central regulators: PM H+-ATPase and Na+/H+ antiporter. This study reveals that the endogenous small molecules phosphatidylinositol and 4-phosphate phosphatidylinositol regulate the activities of these regulators to maintain ion homeostasis in Arabidopsis under salt stress.</description><subject>1-Phosphatidylinositol 4-Kinase - genetics</subject><subject>1-Phosphatidylinositol 4-Kinase - metabolism</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>ATP Binding Cassette Transporter, Subfamily G - genetics</subject><subject>ATP Binding Cassette Transporter, Subfamily G - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>endogenous small molecules</subject><subject>H+-ATPase</subject><subject>Homeostasis</subject><subject>Ion Transport</subject><subject>Mutation</subject><subject>Na+/H+ antiporter</subject><subject>Phosphatidylinositol Phosphates - metabolism</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>salt stress</subject><subject>Salt Tolerance</subject><subject>Sodium - metabolism</subject><subject>Sodium-Hydrogen Exchangers - metabolism</subject><issn>1674-2052</issn><issn>1752-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2O0zAUhSMEYoaBF2CBvESqkvFPYjcSm2r4KdIIWHRvuc4NdeXEwdep1PebB8OhM6wQC8v3Xp9zruSvKN4yWjHK5O2xGoKfKk45q6iqKKfPimumGl62a6me51qquuS04VfFK8QjpZKupXhZXIlaiHbdNtfFw8fzaAZniT2Y8ScgCT2ZDgGng0muO3s3BnQpeGLG7t8Pdfk0BuLhBB7JELrZL_12VW52PwzCH_s3s7rdrnKZ3BRigkiMTe7kkst7UyCDcWPKh7gwkkMYIGAy6JDk0SaavevCtLTz2GUvGp8IpgiIr4sXvfEIbx7vm2L3-dPublvef__y9W5zX1rBGloKXst-L2sKtZGi7lRtazCiYXK_pqynwIUB2UvV9lyp3jIhZN_0QDnnykpxU7y_xE4x_JoBkx4cWvDejBBm1LxpVCOkbFWW8ovUxoAYoddTdIOJZ82oXuDpo17g6QWepkpneNn07jF_3g_Q_bU80cqCDxdB_mQ4OYgarYPRQuci2KS74P6X_xvFXq--</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Yang, Yongqing</creator><creator>Han, Xiuli</creator><creator>Ma, Liang</creator><creator>Wu, Yujiao</creator><creator>Liu, Xiao</creator><creator>Fu, Haiqi</creator><creator>Liu, Guoyong</creator><creator>Lei, Xiaoguang</creator><creator>Guo, Yan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211206</creationdate><title>Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress</title><author>Yang, Yongqing ; Han, Xiuli ; Ma, Liang ; Wu, Yujiao ; Liu, Xiao ; Fu, Haiqi ; Liu, Guoyong ; Lei, Xiaoguang ; Guo, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3150-3246fb640e4a634d74c4ea3516b801f0e23ae6f679f277fc1336f5fe02227c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-Phosphatidylinositol 4-Kinase - genetics</topic><topic>1-Phosphatidylinositol 4-Kinase - metabolism</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>ATP Binding Cassette Transporter, Subfamily G - genetics</topic><topic>ATP Binding Cassette Transporter, Subfamily G - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>endogenous small molecules</topic><topic>H+-ATPase</topic><topic>Homeostasis</topic><topic>Ion Transport</topic><topic>Mutation</topic><topic>Na+/H+ antiporter</topic><topic>Phosphatidylinositol Phosphates - metabolism</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>salt stress</topic><topic>Salt Tolerance</topic><topic>Sodium - metabolism</topic><topic>Sodium-Hydrogen Exchangers - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongqing</creatorcontrib><creatorcontrib>Han, Xiuli</creatorcontrib><creatorcontrib>Ma, Liang</creatorcontrib><creatorcontrib>Wu, Yujiao</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Fu, Haiqi</creatorcontrib><creatorcontrib>Liu, Guoyong</creatorcontrib><creatorcontrib>Lei, Xiaoguang</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular plant</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongqing</au><au>Han, Xiuli</au><au>Ma, Liang</au><au>Wu, Yujiao</au><au>Liu, Xiao</au><au>Fu, Haiqi</au><au>Liu, Guoyong</au><au>Lei, Xiaoguang</au><au>Guo, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress</atitle><jtitle>Molecular plant</jtitle><addtitle>Mol Plant</addtitle><date>2021-12-06</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>2000</spage><epage>2014</epage><pages>2000-2014</pages><issn>1674-2052</issn><eissn>1752-9867</eissn><abstract>Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions. Maintaining ion homeostasis under salt stress requires coordinated activation of two central regulators: PM H+-ATPase and Na+/H+ antiporter. This study reveals that the endogenous small molecules phosphatidylinositol and 4-phosphate phosphatidylinositol regulate the activities of these regulators to maintain ion homeostasis in Arabidopsis under salt stress.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>34339895</pmid><doi>10.1016/j.molp.2021.07.020</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-2052
ispartof Molecular plant, 2021-12, Vol.14 (12), p.2000-2014
issn 1674-2052
1752-9867
language eng
recordid cdi_proquest_miscellaneous_2557536697
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 1-Phosphatidylinositol 4-Kinase - genetics
1-Phosphatidylinositol 4-Kinase - metabolism
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
ATP Binding Cassette Transporter, Subfamily G - genetics
ATP Binding Cassette Transporter, Subfamily G - metabolism
Cell Membrane - metabolism
endogenous small molecules
H+-ATPase
Homeostasis
Ion Transport
Mutation
Na+/H+ antiporter
Phosphatidylinositol Phosphates - metabolism
Phosphatidylinositols - metabolism
Proton-Translocating ATPases - metabolism
salt stress
Salt Tolerance
Sodium - metabolism
Sodium-Hydrogen Exchangers - metabolism
title Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20changes%20of%20phosphatidylinositol%20and%20phosphatidylinositol%204-phosphate%20levels%20modulate%20H+-ATPase%20and%20Na+/H+%20antiporter%20activities%20to%20maintain%20ion%20homeostasis%20in%20Arabidopsis%20under%20salt%20stress&rft.jtitle=Molecular%20plant&rft.au=Yang,%20Yongqing&rft.date=2021-12-06&rft.volume=14&rft.issue=12&rft.spage=2000&rft.epage=2014&rft.pages=2000-2014&rft.issn=1674-2052&rft.eissn=1752-9867&rft_id=info:doi/10.1016/j.molp.2021.07.020&rft_dat=%3Cproquest_cross%3E2557536697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557536697&rft_id=info:pmid/34339895&rft_els_id=S1674205221003117&rfr_iscdi=true