Impacts of biochar-based fertilization on soil arbuscular mycorrhizal fungal community structure in a karst mountainous area
The application of biochar-based fertilizer can improve soil properties in part by stimulating microbial activity and growth. Karst ecosystems, which make up large areas of Southwest China, are prone to degradation. Understanding the response of arbuscular mycorrhizal fungal (AMF) community structur...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-12, Vol.28 (46), p.66420-66434 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of biochar-based fertilizer can improve soil properties in part by stimulating microbial activity and growth. Karst ecosystems, which make up large areas of Southwest China, are prone to degradation. Understanding the response of arbuscular mycorrhizal fungal (AMF) community structure to biochar-based fertilizer application is of great significance to karst soil restoration. A field experiment was conducted in a typical karst soil (calcareous sandy loam) in Southwest China. A high-throughput sequencing approach was used to investigate the effect of biochar-based fertilization on AMF community structure in the karst soil. With the control (CK), compost with NPK fertilizer (MF), biochar (B), a lower amount of biochar with compost and NPK fertilizer (B1MF), biochar with compost and NPK fertilizer (BMF), and a higher amount of biochar with compost and NPK fertilizer (B4MF), the field trials were set up for 24 months. Soil amendments increased soil nutrient content and AMF diversity. The composition and structure of the AMF community varied among the treatments. AMF community composition was significantly impacted by soil chemical properties such as TC (total carbon), TN (total nitrogen), TP (total phosphorus), and AP (available phosphorus). Furthermore, network analysis showed that biochar-based fertilization increased the scale and complexity of the microbial co-occurrence network. Biochar-based fertilization enabled more keystone species (such as order
Diversisporales
and
Glomerales
) in the soil AMF network to participate in soil carbon resource management and soil nutrient cycling, indicating that biochar-based fertilizer is beneficial for the restoration of degraded karst soils. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-15499-6 |