Complementary digital logic based on the ‘‘Coulomb blockade’’

A finite charging energy, e2/2C′, is required in order to place a single electron onto a small isolated electrode lying between two tunnel junctions and having a total capacitance C′ to its external environment. Under suitable conditions, this elemental charging energy can effectively block all tunn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1992-11, Vol.72 (9), p.4399-4413
1. Verfasser: Tucker, J. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4413
container_issue 9
container_start_page 4399
container_title Journal of applied physics
container_volume 72
creator Tucker, J. R.
description A finite charging energy, e2/2C′, is required in order to place a single electron onto a small isolated electrode lying between two tunnel junctions and having a total capacitance C′ to its external environment. Under suitable conditions, this elemental charging energy can effectively block all tunnel events near zero bias voltage in series arrays of ultrasmall junctions, an effect that has come to be known as the ‘‘Coulomb blockade.’’ This article outlines a new approach to the design of digital logic circuits utilizing the Coulomb blockade in capacitively biased double-junction series arrays. A simple ‘‘on’’/‘‘off ’’ switch is described and complementary versions of this switch are then employed to design individual logic gates in precise correspondence with standard complementary metal–oxide semiconductor architecture. A planar nanofabrication technique is also described that may eventually allow the integration of Coulomb blockade logic onto conventional semiconductor chips, thereby realizing hybrid integrated circuits having device densities and operating speeds far in excess of present technology.
doi_str_mv 10.1063/1.352206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25572728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25572728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-ce16199b431f0176ae8bc8fefba761e539cfc7d9ea22c4b663b16a0e5b10f6e33</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKvgJ8xK3EzNS5pkspShVqHgRtchybzU0UxTJ9OFu36G_l6_xJEKB-7mcuEeQq6BzoBKfgczLhij8oRMgFa6VELQUzKhlEFZaaXPyUXO75QCVFxPyKJO3TZih5vB9l9F067bwcYipnXrC2czNkXaFMMbFof990iddjF1rnAx-Q_b4GH_M3JJzoKNGa_-c0peHxYv9WO5el4-1fer0nM2H0qPIEFrN-cQKChpsXK-ChicVRJQcO2DV41Gy5ifOym5A2kpCgc0SOR8Sm6Ou9s-fe4wD6Zrs8cY7QbTLhsmhGKKVWPx9lj0fcq5x2C2fduNDw1Q8-fJgDl64r_InF3B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25572728</pqid></control><display><type>article</type><title>Complementary digital logic based on the ‘‘Coulomb blockade’’</title><source>AIP Digital Archive</source><creator>Tucker, J. R.</creator><creatorcontrib>Tucker, J. R.</creatorcontrib><description>A finite charging energy, e2/2C′, is required in order to place a single electron onto a small isolated electrode lying between two tunnel junctions and having a total capacitance C′ to its external environment. Under suitable conditions, this elemental charging energy can effectively block all tunnel events near zero bias voltage in series arrays of ultrasmall junctions, an effect that has come to be known as the ‘‘Coulomb blockade.’’ This article outlines a new approach to the design of digital logic circuits utilizing the Coulomb blockade in capacitively biased double-junction series arrays. A simple ‘‘on’’/‘‘off ’’ switch is described and complementary versions of this switch are then employed to design individual logic gates in precise correspondence with standard complementary metal–oxide semiconductor architecture. A planar nanofabrication technique is also described that may eventually allow the integration of Coulomb blockade logic onto conventional semiconductor chips, thereby realizing hybrid integrated circuits having device densities and operating speeds far in excess of present technology.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.352206</identifier><language>eng</language><ispartof>Journal of applied physics, 1992-11, Vol.72 (9), p.4399-4413</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-ce16199b431f0176ae8bc8fefba761e539cfc7d9ea22c4b663b16a0e5b10f6e33</citedby><cites>FETCH-LOGICAL-c324t-ce16199b431f0176ae8bc8fefba761e539cfc7d9ea22c4b663b16a0e5b10f6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tucker, J. R.</creatorcontrib><title>Complementary digital logic based on the ‘‘Coulomb blockade’’</title><title>Journal of applied physics</title><description>A finite charging energy, e2/2C′, is required in order to place a single electron onto a small isolated electrode lying between two tunnel junctions and having a total capacitance C′ to its external environment. Under suitable conditions, this elemental charging energy can effectively block all tunnel events near zero bias voltage in series arrays of ultrasmall junctions, an effect that has come to be known as the ‘‘Coulomb blockade.’’ This article outlines a new approach to the design of digital logic circuits utilizing the Coulomb blockade in capacitively biased double-junction series arrays. A simple ‘‘on’’/‘‘off ’’ switch is described and complementary versions of this switch are then employed to design individual logic gates in precise correspondence with standard complementary metal–oxide semiconductor architecture. A planar nanofabrication technique is also described that may eventually allow the integration of Coulomb blockade logic onto conventional semiconductor chips, thereby realizing hybrid integrated circuits having device densities and operating speeds far in excess of present technology.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKvgJ8xK3EzNS5pkspShVqHgRtchybzU0UxTJ9OFu36G_l6_xJEKB-7mcuEeQq6BzoBKfgczLhij8oRMgFa6VELQUzKhlEFZaaXPyUXO75QCVFxPyKJO3TZih5vB9l9F067bwcYipnXrC2czNkXaFMMbFof990iddjF1rnAx-Q_b4GH_M3JJzoKNGa_-c0peHxYv9WO5el4-1fer0nM2H0qPIEFrN-cQKChpsXK-ChicVRJQcO2DV41Gy5ifOym5A2kpCgc0SOR8Sm6Ou9s-fe4wD6Zrs8cY7QbTLhsmhGKKVWPx9lj0fcq5x2C2fduNDw1Q8-fJgDl64r_InF3B</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Tucker, J. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19921101</creationdate><title>Complementary digital logic based on the ‘‘Coulomb blockade’’</title><author>Tucker, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-ce16199b431f0176ae8bc8fefba761e539cfc7d9ea22c4b663b16a0e5b10f6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tucker, J. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tucker, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary digital logic based on the ‘‘Coulomb blockade’’</atitle><jtitle>Journal of applied physics</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>72</volume><issue>9</issue><spage>4399</spage><epage>4413</epage><pages>4399-4413</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A finite charging energy, e2/2C′, is required in order to place a single electron onto a small isolated electrode lying between two tunnel junctions and having a total capacitance C′ to its external environment. Under suitable conditions, this elemental charging energy can effectively block all tunnel events near zero bias voltage in series arrays of ultrasmall junctions, an effect that has come to be known as the ‘‘Coulomb blockade.’’ This article outlines a new approach to the design of digital logic circuits utilizing the Coulomb blockade in capacitively biased double-junction series arrays. A simple ‘‘on’’/‘‘off ’’ switch is described and complementary versions of this switch are then employed to design individual logic gates in precise correspondence with standard complementary metal–oxide semiconductor architecture. A planar nanofabrication technique is also described that may eventually allow the integration of Coulomb blockade logic onto conventional semiconductor chips, thereby realizing hybrid integrated circuits having device densities and operating speeds far in excess of present technology.</abstract><doi>10.1063/1.352206</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1992-11, Vol.72 (9), p.4399-4413
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_25572728
source AIP Digital Archive
title Complementary digital logic based on the ‘‘Coulomb blockade’’
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary%20digital%20logic%20based%20on%20the%20%E2%80%98%E2%80%98Coulomb%20blockade%E2%80%99%E2%80%99&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tucker,%20J.%20R.&rft.date=1992-11-01&rft.volume=72&rft.issue=9&rft.spage=4399&rft.epage=4413&rft.pages=4399-4413&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.352206&rft_dat=%3Cproquest_cross%3E25572728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25572728&rft_id=info:pmid/&rfr_iscdi=true