Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2

Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2022-01, Vol.36 (1), p.210-220
Hauptverfasser: Yang, Jing, Weisberg, Ellen L., Liu, Xiaoxi, Magin, Robert S., Chan, Wai Cheung, Hu, Bin, Schauer, Nathan J., Zhang, Shengzhe, Lamberto, Ilaria, Doherty, Laura, Meng, Chengcheng, Sattler, Martin, Cabal-Hierro, Lucia, Winer, Eric, Stone, Richard, Marto, Jarrod A., Griffin, James D., Buhrlage, Sara J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 1
container_start_page 210
container_title Leukemia
container_volume 36
creator Yang, Jing
Weisberg, Ellen L.
Liu, Xiaoxi
Magin, Robert S.
Chan, Wai Cheung
Hu, Bin
Schauer, Nathan J.
Zhang, Shengzhe
Lamberto, Ilaria
Doherty, Laura
Meng, Chengcheng
Sattler, Martin
Cabal-Hierro, Lucia
Winer, Eric
Stone, Richard
Marto, Jarrod A.
Griffin, James D.
Buhrlage, Sara J.
description Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell’s intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.
doi_str_mv 10.1038/s41375-021-01336-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2557223053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557223053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-80099da898261471c2e7b70be8377aa007dd21a2f24ea3517c5f805c4efd9cce3</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EokPhD7BAlth0E-pHbCfLquXVVuqisLYc52bGxYmnflANvx4PU0BiwcKyrHvud691EHpNyTtKeHeaWsqVaAijDaGcy6Z_gla0VbIRQtCnaEW6TjWyZ-0RepHSHSH7onyOjnjLmWylWKFyOxvv8Rw82OIBu2XjBpddWHCY8AhlcPelvhdTzxrD8mM3A768ub2g2CRs8BK-g8fZxDVkGHHeQDTbHZ5CxB7KN5hdxR5c3uC5ZLNkfHl2xV6iZ5PxCV493sfo64f3X84_Ndc3Hz-fn103tn4sNx0hfT-aru-YrKtTy0ANigzQcaWMIUSNI6OGTawFwwVVVkwdEbaFaeytBX6MTg652xjuC6SsZ5cseG8WCCVpJoRijBPBK_r2H_QulLjU7XQdLlslJN9T7EDZGFKKMOltdLOJO02J3kvRBym6StG_pOi-Nr15jC7DDOOflt8WKsAPQKqlZQ3x7-z_xP4EOpyXeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616475633</pqid></control><display><type>article</type><title>Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Jing ; Weisberg, Ellen L. ; Liu, Xiaoxi ; Magin, Robert S. ; Chan, Wai Cheung ; Hu, Bin ; Schauer, Nathan J. ; Zhang, Shengzhe ; Lamberto, Ilaria ; Doherty, Laura ; Meng, Chengcheng ; Sattler, Martin ; Cabal-Hierro, Lucia ; Winer, Eric ; Stone, Richard ; Marto, Jarrod A. ; Griffin, James D. ; Buhrlage, Sara J.</creator><creatorcontrib>Yang, Jing ; Weisberg, Ellen L. ; Liu, Xiaoxi ; Magin, Robert S. ; Chan, Wai Cheung ; Hu, Bin ; Schauer, Nathan J. ; Zhang, Shengzhe ; Lamberto, Ilaria ; Doherty, Laura ; Meng, Chengcheng ; Sattler, Martin ; Cabal-Hierro, Lucia ; Winer, Eric ; Stone, Richard ; Marto, Jarrod A. ; Griffin, James D. ; Buhrlage, Sara J.</creatorcontrib><description>Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell’s intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-021-01336-9</identifier><identifier>PMID: 34326465</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 38/44 ; 38/77 ; 42/41 ; 631/67 ; 692/308/153 ; Acute myeloid leukemia ; Aged ; Aged, 80 and over ; Apoptosis ; Biodegradation ; Blood cells ; Cancer Research ; Cell Proliferation ; Critical Care Medicine ; Degradation ; Deubiquitinating Enzymes - antagonists &amp; inhibitors ; Drug resistance ; Genetics ; Hematology ; Humans ; Inactivation ; Intensive ; Internal Medicine ; Janus kinase ; Janus kinase 2 ; Janus Kinase 2 - genetics ; Kinases ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - enzymology ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - pathology ; Leukocytes ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Mutants ; Mutation ; Myeloproliferative Disorders - drug therapy ; Myeloproliferative Disorders - enzymology ; Myeloproliferative Disorders - genetics ; Myeloproliferative Disorders - pathology ; Neoplasms ; Oncology ; Phosphorylation ; Platelets ; Prognosis ; Proteins ; Selectivity ; Small Molecule Libraries - pharmacology ; Toxicity ; Tumor Cells, Cultured ; Ubiquitination</subject><ispartof>Leukemia, 2022-01, Vol.36 (1), p.210-220</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-80099da898261471c2e7b70be8377aa007dd21a2f24ea3517c5f805c4efd9cce3</citedby><cites>FETCH-LOGICAL-c375t-80099da898261471c2e7b70be8377aa007dd21a2f24ea3517c5f805c4efd9cce3</cites><orcidid>0000-0003-2086-1134 ; 0000-0003-4562-1823 ; 0000-0002-9212-0776 ; 0000-0002-3004-4923 ; 0000-0002-5679-9531 ; 0000-0001-8413-5401 ; 0000-0003-1823-7930 ; 0000-0001-5053-4199 ; 0000-0001-6441-709X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41375-021-01336-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41375-021-01336-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34326465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Weisberg, Ellen L.</creatorcontrib><creatorcontrib>Liu, Xiaoxi</creatorcontrib><creatorcontrib>Magin, Robert S.</creatorcontrib><creatorcontrib>Chan, Wai Cheung</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Schauer, Nathan J.</creatorcontrib><creatorcontrib>Zhang, Shengzhe</creatorcontrib><creatorcontrib>Lamberto, Ilaria</creatorcontrib><creatorcontrib>Doherty, Laura</creatorcontrib><creatorcontrib>Meng, Chengcheng</creatorcontrib><creatorcontrib>Sattler, Martin</creatorcontrib><creatorcontrib>Cabal-Hierro, Lucia</creatorcontrib><creatorcontrib>Winer, Eric</creatorcontrib><creatorcontrib>Stone, Richard</creatorcontrib><creatorcontrib>Marto, Jarrod A.</creatorcontrib><creatorcontrib>Griffin, James D.</creatorcontrib><creatorcontrib>Buhrlage, Sara J.</creatorcontrib><title>Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell’s intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>38/44</subject><subject>38/77</subject><subject>42/41</subject><subject>631/67</subject><subject>692/308/153</subject><subject>Acute myeloid leukemia</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Apoptosis</subject><subject>Biodegradation</subject><subject>Blood cells</subject><subject>Cancer Research</subject><subject>Cell Proliferation</subject><subject>Critical Care Medicine</subject><subject>Degradation</subject><subject>Deubiquitinating Enzymes - antagonists &amp; inhibitors</subject><subject>Drug resistance</subject><subject>Genetics</subject><subject>Hematology</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Janus kinase</subject><subject>Janus kinase 2</subject><subject>Janus Kinase 2 - genetics</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - enzymology</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Leukocytes</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Myeloproliferative Disorders - drug therapy</subject><subject>Myeloproliferative Disorders - enzymology</subject><subject>Myeloproliferative Disorders - genetics</subject><subject>Myeloproliferative Disorders - pathology</subject><subject>Neoplasms</subject><subject>Oncology</subject><subject>Phosphorylation</subject><subject>Platelets</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Selectivity</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Toxicity</subject><subject>Tumor Cells, Cultured</subject><subject>Ubiquitination</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAURi0EokPhD7BAlth0E-pHbCfLquXVVuqisLYc52bGxYmnflANvx4PU0BiwcKyrHvud691EHpNyTtKeHeaWsqVaAijDaGcy6Z_gla0VbIRQtCnaEW6TjWyZ-0RepHSHSH7onyOjnjLmWylWKFyOxvv8Rw82OIBu2XjBpddWHCY8AhlcPelvhdTzxrD8mM3A768ub2g2CRs8BK-g8fZxDVkGHHeQDTbHZ5CxB7KN5hdxR5c3uC5ZLNkfHl2xV6iZ5PxCV493sfo64f3X84_Ndc3Hz-fn103tn4sNx0hfT-aru-YrKtTy0ANigzQcaWMIUSNI6OGTawFwwVVVkwdEbaFaeytBX6MTg652xjuC6SsZ5cseG8WCCVpJoRijBPBK_r2H_QulLjU7XQdLlslJN9T7EDZGFKKMOltdLOJO02J3kvRBym6StG_pOi-Nr15jC7DDOOflt8WKsAPQKqlZQ3x7-z_xP4EOpyXeA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yang, Jing</creator><creator>Weisberg, Ellen L.</creator><creator>Liu, Xiaoxi</creator><creator>Magin, Robert S.</creator><creator>Chan, Wai Cheung</creator><creator>Hu, Bin</creator><creator>Schauer, Nathan J.</creator><creator>Zhang, Shengzhe</creator><creator>Lamberto, Ilaria</creator><creator>Doherty, Laura</creator><creator>Meng, Chengcheng</creator><creator>Sattler, Martin</creator><creator>Cabal-Hierro, Lucia</creator><creator>Winer, Eric</creator><creator>Stone, Richard</creator><creator>Marto, Jarrod A.</creator><creator>Griffin, James D.</creator><creator>Buhrlage, Sara J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2086-1134</orcidid><orcidid>https://orcid.org/0000-0003-4562-1823</orcidid><orcidid>https://orcid.org/0000-0002-9212-0776</orcidid><orcidid>https://orcid.org/0000-0002-3004-4923</orcidid><orcidid>https://orcid.org/0000-0002-5679-9531</orcidid><orcidid>https://orcid.org/0000-0001-8413-5401</orcidid><orcidid>https://orcid.org/0000-0003-1823-7930</orcidid><orcidid>https://orcid.org/0000-0001-5053-4199</orcidid><orcidid>https://orcid.org/0000-0001-6441-709X</orcidid></search><sort><creationdate>20220101</creationdate><title>Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2</title><author>Yang, Jing ; Weisberg, Ellen L. ; Liu, Xiaoxi ; Magin, Robert S. ; Chan, Wai Cheung ; Hu, Bin ; Schauer, Nathan J. ; Zhang, Shengzhe ; Lamberto, Ilaria ; Doherty, Laura ; Meng, Chengcheng ; Sattler, Martin ; Cabal-Hierro, Lucia ; Winer, Eric ; Stone, Richard ; Marto, Jarrod A. ; Griffin, James D. ; Buhrlage, Sara J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-80099da898261471c2e7b70be8377aa007dd21a2f24ea3517c5f805c4efd9cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>38/44</topic><topic>38/77</topic><topic>42/41</topic><topic>631/67</topic><topic>692/308/153</topic><topic>Acute myeloid leukemia</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Apoptosis</topic><topic>Biodegradation</topic><topic>Blood cells</topic><topic>Cancer Research</topic><topic>Cell Proliferation</topic><topic>Critical Care Medicine</topic><topic>Degradation</topic><topic>Deubiquitinating Enzymes - antagonists &amp; inhibitors</topic><topic>Drug resistance</topic><topic>Genetics</topic><topic>Hematology</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Janus kinase</topic><topic>Janus kinase 2</topic><topic>Janus Kinase 2 - genetics</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - enzymology</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Leukocytes</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Myeloproliferative Disorders - drug therapy</topic><topic>Myeloproliferative Disorders - enzymology</topic><topic>Myeloproliferative Disorders - genetics</topic><topic>Myeloproliferative Disorders - pathology</topic><topic>Neoplasms</topic><topic>Oncology</topic><topic>Phosphorylation</topic><topic>Platelets</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Selectivity</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Toxicity</topic><topic>Tumor Cells, Cultured</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Weisberg, Ellen L.</creatorcontrib><creatorcontrib>Liu, Xiaoxi</creatorcontrib><creatorcontrib>Magin, Robert S.</creatorcontrib><creatorcontrib>Chan, Wai Cheung</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Schauer, Nathan J.</creatorcontrib><creatorcontrib>Zhang, Shengzhe</creatorcontrib><creatorcontrib>Lamberto, Ilaria</creatorcontrib><creatorcontrib>Doherty, Laura</creatorcontrib><creatorcontrib>Meng, Chengcheng</creatorcontrib><creatorcontrib>Sattler, Martin</creatorcontrib><creatorcontrib>Cabal-Hierro, Lucia</creatorcontrib><creatorcontrib>Winer, Eric</creatorcontrib><creatorcontrib>Stone, Richard</creatorcontrib><creatorcontrib>Marto, Jarrod A.</creatorcontrib><creatorcontrib>Griffin, James D.</creatorcontrib><creatorcontrib>Buhrlage, Sara J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jing</au><au>Weisberg, Ellen L.</au><au>Liu, Xiaoxi</au><au>Magin, Robert S.</au><au>Chan, Wai Cheung</au><au>Hu, Bin</au><au>Schauer, Nathan J.</au><au>Zhang, Shengzhe</au><au>Lamberto, Ilaria</au><au>Doherty, Laura</au><au>Meng, Chengcheng</au><au>Sattler, Martin</au><au>Cabal-Hierro, Lucia</au><au>Winer, Eric</au><au>Stone, Richard</au><au>Marto, Jarrod A.</au><au>Griffin, James D.</au><au>Buhrlage, Sara J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><spage>210</spage><epage>220</epage><pages>210-220</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell’s intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34326465</pmid><doi>10.1038/s41375-021-01336-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2086-1134</orcidid><orcidid>https://orcid.org/0000-0003-4562-1823</orcidid><orcidid>https://orcid.org/0000-0002-9212-0776</orcidid><orcidid>https://orcid.org/0000-0002-3004-4923</orcidid><orcidid>https://orcid.org/0000-0002-5679-9531</orcidid><orcidid>https://orcid.org/0000-0001-8413-5401</orcidid><orcidid>https://orcid.org/0000-0003-1823-7930</orcidid><orcidid>https://orcid.org/0000-0001-5053-4199</orcidid><orcidid>https://orcid.org/0000-0001-6441-709X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2022-01, Vol.36 (1), p.210-220
issn 0887-6924
1476-5551
language eng
recordid cdi_proquest_miscellaneous_2557223053
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 13/1
13/106
13/109
38/44
38/77
42/41
631/67
692/308/153
Acute myeloid leukemia
Aged
Aged, 80 and over
Apoptosis
Biodegradation
Blood cells
Cancer Research
Cell Proliferation
Critical Care Medicine
Degradation
Deubiquitinating Enzymes - antagonists & inhibitors
Drug resistance
Genetics
Hematology
Humans
Inactivation
Intensive
Internal Medicine
Janus kinase
Janus kinase 2
Janus Kinase 2 - genetics
Kinases
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - enzymology
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - pathology
Leukocytes
Medicine
Medicine & Public Health
Middle Aged
Mutants
Mutation
Myeloproliferative Disorders - drug therapy
Myeloproliferative Disorders - enzymology
Myeloproliferative Disorders - genetics
Myeloproliferative Disorders - pathology
Neoplasms
Oncology
Phosphorylation
Platelets
Prognosis
Proteins
Selectivity
Small Molecule Libraries - pharmacology
Toxicity
Tumor Cells, Cultured
Ubiquitination
title Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20molecule%20inhibition%20of%20deubiquitinating%20enzyme%20JOSD1%20as%20a%20novel%20targeted%20therapy%20for%20leukemias%20with%20mutant%20JAK2&rft.jtitle=Leukemia&rft.au=Yang,%20Jing&rft.date=2022-01-01&rft.volume=36&rft.issue=1&rft.spage=210&rft.epage=220&rft.pages=210-220&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-021-01336-9&rft_dat=%3Cproquest_cross%3E2557223053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616475633&rft_id=info:pmid/34326465&rfr_iscdi=true