Interfacial Engineering of CuCo2S4/g‑C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction

Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-08, Vol.60 (16), p.12355-12366
Hauptverfasser: Biswas, Rathindranath, Thakur, Pooja, Kaur, Gagandeep, Som, Shubham, Saha, Monochura, Jhajhria, Vandna, Singh, Harjinder, Ahmed, Imtiaz, Banerjee, Biplab, Chopra, Deepak, Sen, Tapasi, Haldar, Krishna Kanta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12366
container_issue 16
container_start_page 12355
container_title Inorganic chemistry
container_volume 60
creator Biswas, Rathindranath
Thakur, Pooja
Kaur, Gagandeep
Som, Shubham
Saha, Monochura
Jhajhria, Vandna
Singh, Harjinder
Ahmed, Imtiaz
Banerjee, Biplab
Chopra, Deepak
Sen, Tapasi
Haldar, Krishna Kanta
description Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper­(II), Cu­[PDTC]2, and pyrrolidine dithiocarbamate-cobalt­(II), Co­[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance–Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co–N/S–C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm–2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm–2.
doi_str_mv 10.1021/acs.inorgchem.1c01566
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2556386895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556386895</sourcerecordid><originalsourceid>FETCH-LOGICAL-a226t-3b0ba3b177a3725c5bafa289c1993e8afaef1b0cc02345069af43966643afa253</originalsourceid><addsrcrecordid>eNo9kM9KAzEQh4MoWKuPIOTope0k2aSboyyrLZQW_APelmyarCnbRDe7Ym--gq_ok7iLxdP8ZviYGT6ErglMCVAyUzpOnQ9NpV_Nfko0EC7ECRoRTmHCCbycohFAn4kQ8hxdxLgDAMkSMUJ66VvTWKWdqnHuK-eNaZyvcLA467JAH5NZ9fP1nbF1gheHsnFbvFb9sbCN2IYG59Y67Yxv8ebzUBmP849Qd60LHj8YpYdwic6sqqO5OtYxer7Ln7LFZLW5X2a3q4miVLQTVkKpWEnmc8XmlGteKqtoKjWRkpm0b4wlJWgNlCUchFQ2YVIIkbAB5GyMbv72vjXhvTOxLfYualPXypvQxYJyLlgqUjmg5A_t3RW70DW-f6wgUAxCi2H4L7Q4CmW_XeFuEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556386895</pqid></control><display><type>article</type><title>Interfacial Engineering of CuCo2S4/g‑C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction</title><source>ACS Publications</source><creator>Biswas, Rathindranath ; Thakur, Pooja ; Kaur, Gagandeep ; Som, Shubham ; Saha, Monochura ; Jhajhria, Vandna ; Singh, Harjinder ; Ahmed, Imtiaz ; Banerjee, Biplab ; Chopra, Deepak ; Sen, Tapasi ; Haldar, Krishna Kanta</creator><creatorcontrib>Biswas, Rathindranath ; Thakur, Pooja ; Kaur, Gagandeep ; Som, Shubham ; Saha, Monochura ; Jhajhria, Vandna ; Singh, Harjinder ; Ahmed, Imtiaz ; Banerjee, Biplab ; Chopra, Deepak ; Sen, Tapasi ; Haldar, Krishna Kanta</creatorcontrib><description>Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper­(II), Cu­[PDTC]2, and pyrrolidine dithiocarbamate-cobalt­(II), Co­[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance–Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co–N/S–C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm–2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm–2.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.1c01566</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Inorganic chemistry, 2021-08, Vol.60 (16), p.12355-12366</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9203-427X ; 0000-0002-0675-8299 ; 0000-0003-0243-178X ; 0000-0002-0909-1442 ; 0000-0002-0018-6007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.1c01566$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01566$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Biswas, Rathindranath</creatorcontrib><creatorcontrib>Thakur, Pooja</creatorcontrib><creatorcontrib>Kaur, Gagandeep</creatorcontrib><creatorcontrib>Som, Shubham</creatorcontrib><creatorcontrib>Saha, Monochura</creatorcontrib><creatorcontrib>Jhajhria, Vandna</creatorcontrib><creatorcontrib>Singh, Harjinder</creatorcontrib><creatorcontrib>Ahmed, Imtiaz</creatorcontrib><creatorcontrib>Banerjee, Biplab</creatorcontrib><creatorcontrib>Chopra, Deepak</creatorcontrib><creatorcontrib>Sen, Tapasi</creatorcontrib><creatorcontrib>Haldar, Krishna Kanta</creatorcontrib><title>Interfacial Engineering of CuCo2S4/g‑C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper­(II), Cu­[PDTC]2, and pyrrolidine dithiocarbamate-cobalt­(II), Co­[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance–Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co–N/S–C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm–2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm–2.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQh4MoWKuPIOTope0k2aSboyyrLZQW_APelmyarCnbRDe7Ym--gq_ok7iLxdP8ZviYGT6ErglMCVAyUzpOnQ9NpV_Nfko0EC7ECRoRTmHCCbycohFAn4kQ8hxdxLgDAMkSMUJ66VvTWKWdqnHuK-eNaZyvcLA467JAH5NZ9fP1nbF1gheHsnFbvFb9sbCN2IYG59Y67Yxv8ebzUBmP849Qd60LHj8YpYdwic6sqqO5OtYxer7Ln7LFZLW5X2a3q4miVLQTVkKpWEnmc8XmlGteKqtoKjWRkpm0b4wlJWgNlCUchFQ2YVIIkbAB5GyMbv72vjXhvTOxLfYualPXypvQxYJyLlgqUjmg5A_t3RW70DW-f6wgUAxCi2H4L7Q4CmW_XeFuEw</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Biswas, Rathindranath</creator><creator>Thakur, Pooja</creator><creator>Kaur, Gagandeep</creator><creator>Som, Shubham</creator><creator>Saha, Monochura</creator><creator>Jhajhria, Vandna</creator><creator>Singh, Harjinder</creator><creator>Ahmed, Imtiaz</creator><creator>Banerjee, Biplab</creator><creator>Chopra, Deepak</creator><creator>Sen, Tapasi</creator><creator>Haldar, Krishna Kanta</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9203-427X</orcidid><orcidid>https://orcid.org/0000-0002-0675-8299</orcidid><orcidid>https://orcid.org/0000-0003-0243-178X</orcidid><orcidid>https://orcid.org/0000-0002-0909-1442</orcidid><orcidid>https://orcid.org/0000-0002-0018-6007</orcidid></search><sort><creationdate>20210816</creationdate><title>Interfacial Engineering of CuCo2S4/g‑C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction</title><author>Biswas, Rathindranath ; Thakur, Pooja ; Kaur, Gagandeep ; Som, Shubham ; Saha, Monochura ; Jhajhria, Vandna ; Singh, Harjinder ; Ahmed, Imtiaz ; Banerjee, Biplab ; Chopra, Deepak ; Sen, Tapasi ; Haldar, Krishna Kanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a226t-3b0ba3b177a3725c5bafa289c1993e8afaef1b0cc02345069af43966643afa253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Rathindranath</creatorcontrib><creatorcontrib>Thakur, Pooja</creatorcontrib><creatorcontrib>Kaur, Gagandeep</creatorcontrib><creatorcontrib>Som, Shubham</creatorcontrib><creatorcontrib>Saha, Monochura</creatorcontrib><creatorcontrib>Jhajhria, Vandna</creatorcontrib><creatorcontrib>Singh, Harjinder</creatorcontrib><creatorcontrib>Ahmed, Imtiaz</creatorcontrib><creatorcontrib>Banerjee, Biplab</creatorcontrib><creatorcontrib>Chopra, Deepak</creatorcontrib><creatorcontrib>Sen, Tapasi</creatorcontrib><creatorcontrib>Haldar, Krishna Kanta</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Rathindranath</au><au>Thakur, Pooja</au><au>Kaur, Gagandeep</au><au>Som, Shubham</au><au>Saha, Monochura</au><au>Jhajhria, Vandna</au><au>Singh, Harjinder</au><au>Ahmed, Imtiaz</au><au>Banerjee, Biplab</au><au>Chopra, Deepak</au><au>Sen, Tapasi</au><au>Haldar, Krishna Kanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Engineering of CuCo2S4/g‑C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2021-08-16</date><risdate>2021</risdate><volume>60</volume><issue>16</issue><spage>12355</spage><epage>12366</epage><pages>12355-12366</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper­(II), Cu­[PDTC]2, and pyrrolidine dithiocarbamate-cobalt­(II), Co­[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance–Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co–N/S–C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm–2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm–2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.inorgchem.1c01566</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9203-427X</orcidid><orcidid>https://orcid.org/0000-0002-0675-8299</orcidid><orcidid>https://orcid.org/0000-0003-0243-178X</orcidid><orcidid>https://orcid.org/0000-0002-0909-1442</orcidid><orcidid>https://orcid.org/0000-0002-0018-6007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2021-08, Vol.60 (16), p.12355-12366
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2556386895
source ACS Publications
title Interfacial Engineering of CuCo2S4/g‑C3N4 Hybrid Nanorods for Efficient Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Engineering%20of%20CuCo2S4/g%E2%80%91C3N4%20Hybrid%20Nanorods%20for%20Efficient%20Oxygen%20Evolution%20Reaction&rft.jtitle=Inorganic%20chemistry&rft.au=Biswas,%20Rathindranath&rft.date=2021-08-16&rft.volume=60&rft.issue=16&rft.spage=12355&rft.epage=12366&rft.pages=12355-12366&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.1c01566&rft_dat=%3Cproquest_acs_j%3E2556386895%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556386895&rft_id=info:pmid/&rfr_iscdi=true