Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction

The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-08, Vol.143 (31), p.12038-12052
Hauptverfasser: Lin, Shanfan, Zhi, Yuchun, Chen, Wei, Li, Huan, Zhang, Wenna, Lou, Caiyi, Wu, Xinqiang, Zeng, Shu, Xu, Shutao, Xiao, Jianping, Zheng, Anmin, Wei, Yingxu, Liu, Zhongmin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12052
container_issue 31
container_start_page 12038
container_title Journal of the American Chemical Society
container_volume 143
creator Lin, Shanfan
Zhi, Yuchun
Chen, Wei
Li, Huan
Zhang, Wenna
Lou, Caiyi
Wu, Xinqiang
Zeng, Shu
Xu, Shutao
Xiao, Jianping
Zheng, Anmin
Wei, Yingxu
Liu, Zhongmin
description The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach and multiscale analysis, we have obtained a full theoretical picture of the domino cascade of autocatalytic reaction network taking place on HZSM-5 zeolite. The autocatalytic reaction is demonstrated to be plausibly initiated by reacting dimethyl ether (DME) with the surface methoxy species (SMS) to generate the initial olefins, as evidenced by combining the kinetic analysis, in situ DRIFT spectroscopy, 2D 13C–13C MAS NMR, electronic states, and projected density of state (PDOS) analysis. This process is operando tracked and visualized at the picosecond time scale by advanced ab initio molecular dynamics (AIMD) simulations. The initial olefins ignite autocatalysis by building the first autocatalytic cycleolefins-based cyclefollowed by the speciation of methylcyclopentenyl (MCP) and aromatic cyclic active species. In doing so, the active sites accomplish the dynamic evolution from proton acid sites to supramolecular active centers that are experimentally identified with an ever-evolving and fluid feature. The olefins-guided and cyclic-species-guided catalytic cycles are interdependently linked to forge a previously unidentified hypercycle, being composed of one “selfish” autocatalytic cycle (i.e., olefins-based cycle with lighter olefins as autocatalysts for catalyzing the formation of olefins) and three cross-catalysis cycles (with olefinic, MCP, and aromatic species as autocatalysts for catalyzing each other’s formation). The unraveled dynamic autocatalytic cycles/network would facilitate the catalyst design and process control for MTH technology.
doi_str_mv 10.1021/jacs.1c03475
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2556385556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556385556</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-569f0c469f748a21fd45566fa2968b60d8f942ed601b61a9e38d991d3d42efa93</originalsourceid><addsrcrecordid>eNptkLtPwzAQxi0EoqWwMaOMDKT4nXisyqNIrSpVMEeOHyJVEhfbGfLfk6gFFpY73d133-l-ANwiOEcQo8e9VGGOFCQ0Y2dgihiGKUOYn4MphBCnWc7JBFyFsB9KinN0CSaEEiQywqZgu3G1UV0tfbJzXTQhcTZ56lvZVCpZdNEpGWXdhyok1vlkY-KnbF2dRpeueu2HsS9dG5KdkSpWrr0GF1bWwdyc8gx8vDy_L1fpevv6tlysU0kwjSnjwkJFh5jRXGJkNWWMcyux4HnJoc6toNhoDlHJkRSG5FoIpIkeulYKMgP3R9-Dd1-dCbFoqqBMXcvWuC4UeLAjORvjDDwcpcq7ELyxxcFXjfR9gWAxIixGhMUJ4SC_Ozl3ZWP0r_iH2d_pcWvvOt8Oj_7v9Q2zJ3nW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556385556</pqid></control><display><type>article</type><title>Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction</title><source>ACS Publications</source><creator>Lin, Shanfan ; Zhi, Yuchun ; Chen, Wei ; Li, Huan ; Zhang, Wenna ; Lou, Caiyi ; Wu, Xinqiang ; Zeng, Shu ; Xu, Shutao ; Xiao, Jianping ; Zheng, Anmin ; Wei, Yingxu ; Liu, Zhongmin</creator><creatorcontrib>Lin, Shanfan ; Zhi, Yuchun ; Chen, Wei ; Li, Huan ; Zhang, Wenna ; Lou, Caiyi ; Wu, Xinqiang ; Zeng, Shu ; Xu, Shutao ; Xiao, Jianping ; Zheng, Anmin ; Wei, Yingxu ; Liu, Zhongmin</creatorcontrib><description>The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach and multiscale analysis, we have obtained a full theoretical picture of the domino cascade of autocatalytic reaction network taking place on HZSM-5 zeolite. The autocatalytic reaction is demonstrated to be plausibly initiated by reacting dimethyl ether (DME) with the surface methoxy species (SMS) to generate the initial olefins, as evidenced by combining the kinetic analysis, in situ DRIFT spectroscopy, 2D 13C–13C MAS NMR, electronic states, and projected density of state (PDOS) analysis. This process is operando tracked and visualized at the picosecond time scale by advanced ab initio molecular dynamics (AIMD) simulations. The initial olefins ignite autocatalysis by building the first autocatalytic cycleolefins-based cyclefollowed by the speciation of methylcyclopentenyl (MCP) and aromatic cyclic active species. In doing so, the active sites accomplish the dynamic evolution from proton acid sites to supramolecular active centers that are experimentally identified with an ever-evolving and fluid feature. The olefins-guided and cyclic-species-guided catalytic cycles are interdependently linked to forge a previously unidentified hypercycle, being composed of one “selfish” autocatalytic cycle (i.e., olefins-based cycle with lighter olefins as autocatalysts for catalyzing the formation of olefins) and three cross-catalysis cycles (with olefinic, MCP, and aromatic species as autocatalysts for catalyzing each other’s formation). The unraveled dynamic autocatalytic cycles/network would facilitate the catalyst design and process control for MTH technology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c03475</identifier><identifier>PMID: 34319735</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (31), p.12038-12052</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-569f0c469f748a21fd45566fa2968b60d8f942ed601b61a9e38d991d3d42efa93</citedby><cites>FETCH-LOGICAL-a324t-569f0c469f748a21fd45566fa2968b60d8f942ed601b61a9e38d991d3d42efa93</cites><orcidid>0000-0003-4722-8371 ; 0000-0002-8955-9497 ; 0000-0003-1779-6140 ; 0000-0001-7115-6510 ; 0000-0002-7999-2940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c03475$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c03475$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34319735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Shanfan</creatorcontrib><creatorcontrib>Zhi, Yuchun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Zhang, Wenna</creatorcontrib><creatorcontrib>Lou, Caiyi</creatorcontrib><creatorcontrib>Wu, Xinqiang</creatorcontrib><creatorcontrib>Zeng, Shu</creatorcontrib><creatorcontrib>Xu, Shutao</creatorcontrib><creatorcontrib>Xiao, Jianping</creatorcontrib><creatorcontrib>Zheng, Anmin</creatorcontrib><creatorcontrib>Wei, Yingxu</creatorcontrib><creatorcontrib>Liu, Zhongmin</creatorcontrib><title>Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach and multiscale analysis, we have obtained a full theoretical picture of the domino cascade of autocatalytic reaction network taking place on HZSM-5 zeolite. The autocatalytic reaction is demonstrated to be plausibly initiated by reacting dimethyl ether (DME) with the surface methoxy species (SMS) to generate the initial olefins, as evidenced by combining the kinetic analysis, in situ DRIFT spectroscopy, 2D 13C–13C MAS NMR, electronic states, and projected density of state (PDOS) analysis. This process is operando tracked and visualized at the picosecond time scale by advanced ab initio molecular dynamics (AIMD) simulations. The initial olefins ignite autocatalysis by building the first autocatalytic cycleolefins-based cyclefollowed by the speciation of methylcyclopentenyl (MCP) and aromatic cyclic active species. In doing so, the active sites accomplish the dynamic evolution from proton acid sites to supramolecular active centers that are experimentally identified with an ever-evolving and fluid feature. The olefins-guided and cyclic-species-guided catalytic cycles are interdependently linked to forge a previously unidentified hypercycle, being composed of one “selfish” autocatalytic cycle (i.e., olefins-based cycle with lighter olefins as autocatalysts for catalyzing the formation of olefins) and three cross-catalysis cycles (with olefinic, MCP, and aromatic species as autocatalysts for catalyzing each other’s formation). The unraveled dynamic autocatalytic cycles/network would facilitate the catalyst design and process control for MTH technology.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkLtPwzAQxi0EoqWwMaOMDKT4nXisyqNIrSpVMEeOHyJVEhfbGfLfk6gFFpY73d133-l-ANwiOEcQo8e9VGGOFCQ0Y2dgihiGKUOYn4MphBCnWc7JBFyFsB9KinN0CSaEEiQywqZgu3G1UV0tfbJzXTQhcTZ56lvZVCpZdNEpGWXdhyok1vlkY-KnbF2dRpeueu2HsS9dG5KdkSpWrr0GF1bWwdyc8gx8vDy_L1fpevv6tlysU0kwjSnjwkJFh5jRXGJkNWWMcyux4HnJoc6toNhoDlHJkRSG5FoIpIkeulYKMgP3R9-Dd1-dCbFoqqBMXcvWuC4UeLAjORvjDDwcpcq7ELyxxcFXjfR9gWAxIixGhMUJ4SC_Ozl3ZWP0r_iH2d_pcWvvOt8Oj_7v9Q2zJ3nW</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Lin, Shanfan</creator><creator>Zhi, Yuchun</creator><creator>Chen, Wei</creator><creator>Li, Huan</creator><creator>Zhang, Wenna</creator><creator>Lou, Caiyi</creator><creator>Wu, Xinqiang</creator><creator>Zeng, Shu</creator><creator>Xu, Shutao</creator><creator>Xiao, Jianping</creator><creator>Zheng, Anmin</creator><creator>Wei, Yingxu</creator><creator>Liu, Zhongmin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4722-8371</orcidid><orcidid>https://orcid.org/0000-0002-8955-9497</orcidid><orcidid>https://orcid.org/0000-0003-1779-6140</orcidid><orcidid>https://orcid.org/0000-0001-7115-6510</orcidid><orcidid>https://orcid.org/0000-0002-7999-2940</orcidid></search><sort><creationdate>20210811</creationdate><title>Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction</title><author>Lin, Shanfan ; Zhi, Yuchun ; Chen, Wei ; Li, Huan ; Zhang, Wenna ; Lou, Caiyi ; Wu, Xinqiang ; Zeng, Shu ; Xu, Shutao ; Xiao, Jianping ; Zheng, Anmin ; Wei, Yingxu ; Liu, Zhongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-569f0c469f748a21fd45566fa2968b60d8f942ed601b61a9e38d991d3d42efa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shanfan</creatorcontrib><creatorcontrib>Zhi, Yuchun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Zhang, Wenna</creatorcontrib><creatorcontrib>Lou, Caiyi</creatorcontrib><creatorcontrib>Wu, Xinqiang</creatorcontrib><creatorcontrib>Zeng, Shu</creatorcontrib><creatorcontrib>Xu, Shutao</creatorcontrib><creatorcontrib>Xiao, Jianping</creatorcontrib><creatorcontrib>Zheng, Anmin</creatorcontrib><creatorcontrib>Wei, Yingxu</creatorcontrib><creatorcontrib>Liu, Zhongmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shanfan</au><au>Zhi, Yuchun</au><au>Chen, Wei</au><au>Li, Huan</au><au>Zhang, Wenna</au><au>Lou, Caiyi</au><au>Wu, Xinqiang</au><au>Zeng, Shu</au><au>Xu, Shutao</au><au>Xiao, Jianping</au><au>Zheng, Anmin</au><au>Wei, Yingxu</au><au>Liu, Zhongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-11</date><risdate>2021</risdate><volume>143</volume><issue>31</issue><spage>12038</spage><epage>12052</epage><pages>12038-12052</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach and multiscale analysis, we have obtained a full theoretical picture of the domino cascade of autocatalytic reaction network taking place on HZSM-5 zeolite. The autocatalytic reaction is demonstrated to be plausibly initiated by reacting dimethyl ether (DME) with the surface methoxy species (SMS) to generate the initial olefins, as evidenced by combining the kinetic analysis, in situ DRIFT spectroscopy, 2D 13C–13C MAS NMR, electronic states, and projected density of state (PDOS) analysis. This process is operando tracked and visualized at the picosecond time scale by advanced ab initio molecular dynamics (AIMD) simulations. The initial olefins ignite autocatalysis by building the first autocatalytic cycleolefins-based cyclefollowed by the speciation of methylcyclopentenyl (MCP) and aromatic cyclic active species. In doing so, the active sites accomplish the dynamic evolution from proton acid sites to supramolecular active centers that are experimentally identified with an ever-evolving and fluid feature. The olefins-guided and cyclic-species-guided catalytic cycles are interdependently linked to forge a previously unidentified hypercycle, being composed of one “selfish” autocatalytic cycle (i.e., olefins-based cycle with lighter olefins as autocatalysts for catalyzing the formation of olefins) and three cross-catalysis cycles (with olefinic, MCP, and aromatic species as autocatalysts for catalyzing each other’s formation). The unraveled dynamic autocatalytic cycles/network would facilitate the catalyst design and process control for MTH technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34319735</pmid><doi>10.1021/jacs.1c03475</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4722-8371</orcidid><orcidid>https://orcid.org/0000-0002-8955-9497</orcidid><orcidid>https://orcid.org/0000-0003-1779-6140</orcidid><orcidid>https://orcid.org/0000-0001-7115-6510</orcidid><orcidid>https://orcid.org/0000-0002-7999-2940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-08, Vol.143 (31), p.12038-12052
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2556385556
source ACS Publications
title Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Routes%20of%20Dynamic%20Autocatalysis%20for%20Methanol-to-Hydrocarbons%20Reaction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lin,%20Shanfan&rft.date=2021-08-11&rft.volume=143&rft.issue=31&rft.spage=12038&rft.epage=12052&rft.pages=12038-12052&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c03475&rft_dat=%3Cproquest_cross%3E2556385556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556385556&rft_id=info:pmid/34319735&rfr_iscdi=true