Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane

Zinc-based batteries are promising for use as energy storage devices owing to their low cost and high energy density. However, zinc chemistry commonly encounters serious dendrite issues, especially at high areal capacities and current densities, limiting their application. Herein, we propose a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-08, Vol.143 (33), p.13135-13144
Hauptverfasser: Wu, Jine, Yuan, Chenguang, Li, Tianyu, Yuan, Zhizhang, Zhang, Huamin, Li, Xianfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13144
container_issue 33
container_start_page 13135
container_title Journal of the American Chemical Society
container_volume 143
creator Wu, Jine
Yuan, Chenguang
Li, Tianyu
Yuan, Zhizhang
Zhang, Huamin
Li, Xianfeng
description Zinc-based batteries are promising for use as energy storage devices owing to their low cost and high energy density. However, zinc chemistry commonly encounters serious dendrite issues, especially at high areal capacities and current densities, limiting their application. Herein, we propose a novel membrane featuring ordered undulating stripes called “Turing patterns”, which can effectively suppress zinc dendrites and improve ion conductivity. The crests and troughs in the Turing membrane can effectively adjust the Zn­(OH)4 2– distribution and provide more zinc deposition space. The coordinated Cu ions during membrane formation can interact with Zn­(OH)4 2–, further smoothing zinc deposition. Even at a high current density of 80 mA·cm–2, the Turing membrane enables an alkaline zinc–iron flow battery (AZIFB) to work stably with an ultrahigh areal capacity of 160 mA·h·cm–2 for approximately 110 cycles, showing an energy efficiency of 90.10%, which is by far the highest value ever reported among zinc-based batteries with such a high current density. This paper provides valid access to zinc-based batteries with high areal capacities based on membrane design and promotes their advancement.
doi_str_mv 10.1021/jacs.1c04317
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555637987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555637987</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-f788ce6cebe7a568e0f1f207f28488af20d56dea7aab760d4930cae896ad67973</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujiYje_AE9enCx3WXb7hEQhARjYvDiZTN0p1Cy7K5tV8O_dwkkXjzNzMs3LzOPkHvOBpzF_GkH2g-4ZsOEywvS42nMopTH4pL0GGNxJJVIrsmN97tuHMaK90j7jFXhbMBo5hDpp610NAaPBR1DCOgO9MeGLZ3bzZaOHEJJJ9CAtuFAvy3QsEX6jhtbV9GiKlrd7T1jU3sbOolOjUEdaG3oqnW22tBX3K8dVHhLrgyUHu_OtU8-ZtPVZB4t314Wk9EygoTxEBmplEahcY0SUqGQGW5iJk2shkpB1xapKBAkwFoKVgyzhGlAlQkohMxk0icPJ9_G1V8t-pDvrddYlt0NdevzOE1TkchMHdHHE6pd7b1DkzfO7sEdcs7yY7r5Md38nO6f81Hc1a2ruj_-R38B3YJ7hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555637987</pqid></control><display><type>article</type><title>Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane</title><source>ACS Publications</source><creator>Wu, Jine ; Yuan, Chenguang ; Li, Tianyu ; Yuan, Zhizhang ; Zhang, Huamin ; Li, Xianfeng</creator><creatorcontrib>Wu, Jine ; Yuan, Chenguang ; Li, Tianyu ; Yuan, Zhizhang ; Zhang, Huamin ; Li, Xianfeng</creatorcontrib><description>Zinc-based batteries are promising for use as energy storage devices owing to their low cost and high energy density. However, zinc chemistry commonly encounters serious dendrite issues, especially at high areal capacities and current densities, limiting their application. Herein, we propose a novel membrane featuring ordered undulating stripes called “Turing patterns”, which can effectively suppress zinc dendrites and improve ion conductivity. The crests and troughs in the Turing membrane can effectively adjust the Zn­(OH)4 2– distribution and provide more zinc deposition space. The coordinated Cu ions during membrane formation can interact with Zn­(OH)4 2–, further smoothing zinc deposition. Even at a high current density of 80 mA·cm–2, the Turing membrane enables an alkaline zinc–iron flow battery (AZIFB) to work stably with an ultrahigh areal capacity of 160 mA·h·cm–2 for approximately 110 cycles, showing an energy efficiency of 90.10%, which is by far the highest value ever reported among zinc-based batteries with such a high current density. This paper provides valid access to zinc-based batteries with high areal capacities based on membrane design and promotes their advancement.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c04317</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-08, Vol.143 (33), p.13135-13144</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-f788ce6cebe7a568e0f1f207f28488af20d56dea7aab760d4930cae896ad67973</citedby><cites>FETCH-LOGICAL-a301t-f788ce6cebe7a568e0f1f207f28488af20d56dea7aab760d4930cae896ad67973</cites><orcidid>0000-0002-8541-5779 ; 0000-0003-1773-0248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c04317$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c04317$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wu, Jine</creatorcontrib><creatorcontrib>Yuan, Chenguang</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Yuan, Zhizhang</creatorcontrib><creatorcontrib>Zhang, Huamin</creatorcontrib><creatorcontrib>Li, Xianfeng</creatorcontrib><title>Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Zinc-based batteries are promising for use as energy storage devices owing to their low cost and high energy density. However, zinc chemistry commonly encounters serious dendrite issues, especially at high areal capacities and current densities, limiting their application. Herein, we propose a novel membrane featuring ordered undulating stripes called “Turing patterns”, which can effectively suppress zinc dendrites and improve ion conductivity. The crests and troughs in the Turing membrane can effectively adjust the Zn­(OH)4 2– distribution and provide more zinc deposition space. The coordinated Cu ions during membrane formation can interact with Zn­(OH)4 2–, further smoothing zinc deposition. Even at a high current density of 80 mA·cm–2, the Turing membrane enables an alkaline zinc–iron flow battery (AZIFB) to work stably with an ultrahigh areal capacity of 160 mA·h·cm–2 for approximately 110 cycles, showing an energy efficiency of 90.10%, which is by far the highest value ever reported among zinc-based batteries with such a high current density. This paper provides valid access to zinc-based batteries with high areal capacities based on membrane design and promotes their advancement.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujiYje_AE9enCx3WXb7hEQhARjYvDiZTN0p1Cy7K5tV8O_dwkkXjzNzMs3LzOPkHvOBpzF_GkH2g-4ZsOEywvS42nMopTH4pL0GGNxJJVIrsmN97tuHMaK90j7jFXhbMBo5hDpp610NAaPBR1DCOgO9MeGLZ3bzZaOHEJJJ9CAtuFAvy3QsEX6jhtbV9GiKlrd7T1jU3sbOolOjUEdaG3oqnW22tBX3K8dVHhLrgyUHu_OtU8-ZtPVZB4t314Wk9EygoTxEBmplEahcY0SUqGQGW5iJk2shkpB1xapKBAkwFoKVgyzhGlAlQkohMxk0icPJ9_G1V8t-pDvrddYlt0NdevzOE1TkchMHdHHE6pd7b1DkzfO7sEdcs7yY7r5Md38nO6f81Hc1a2ruj_-R38B3YJ7hg</recordid><startdate>20210825</startdate><enddate>20210825</enddate><creator>Wu, Jine</creator><creator>Yuan, Chenguang</creator><creator>Li, Tianyu</creator><creator>Yuan, Zhizhang</creator><creator>Zhang, Huamin</creator><creator>Li, Xianfeng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8541-5779</orcidid><orcidid>https://orcid.org/0000-0003-1773-0248</orcidid></search><sort><creationdate>20210825</creationdate><title>Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane</title><author>Wu, Jine ; Yuan, Chenguang ; Li, Tianyu ; Yuan, Zhizhang ; Zhang, Huamin ; Li, Xianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-f788ce6cebe7a568e0f1f207f28488af20d56dea7aab760d4930cae896ad67973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jine</creatorcontrib><creatorcontrib>Yuan, Chenguang</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Yuan, Zhizhang</creatorcontrib><creatorcontrib>Zhang, Huamin</creatorcontrib><creatorcontrib>Li, Xianfeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jine</au><au>Yuan, Chenguang</au><au>Li, Tianyu</au><au>Yuan, Zhizhang</au><au>Zhang, Huamin</au><au>Li, Xianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-08-25</date><risdate>2021</risdate><volume>143</volume><issue>33</issue><spage>13135</spage><epage>13144</epage><pages>13135-13144</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Zinc-based batteries are promising for use as energy storage devices owing to their low cost and high energy density. However, zinc chemistry commonly encounters serious dendrite issues, especially at high areal capacities and current densities, limiting their application. Herein, we propose a novel membrane featuring ordered undulating stripes called “Turing patterns”, which can effectively suppress zinc dendrites and improve ion conductivity. The crests and troughs in the Turing membrane can effectively adjust the Zn­(OH)4 2– distribution and provide more zinc deposition space. The coordinated Cu ions during membrane formation can interact with Zn­(OH)4 2–, further smoothing zinc deposition. Even at a high current density of 80 mA·cm–2, the Turing membrane enables an alkaline zinc–iron flow battery (AZIFB) to work stably with an ultrahigh areal capacity of 160 mA·h·cm–2 for approximately 110 cycles, showing an energy efficiency of 90.10%, which is by far the highest value ever reported among zinc-based batteries with such a high current density. This paper provides valid access to zinc-based batteries with high areal capacities based on membrane design and promotes their advancement.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c04317</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8541-5779</orcidid><orcidid>https://orcid.org/0000-0003-1773-0248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-08, Vol.143 (33), p.13135-13144
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2555637987
source ACS Publications
title Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite-Free%20Zinc-Based%20Battery%20with%20High%20Areal%20Capacity%20via%20the%20Region-Induced%20Deposition%20Effect%20of%20Turing%20Membrane&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wu,%20Jine&rft.date=2021-08-25&rft.volume=143&rft.issue=33&rft.spage=13135&rft.epage=13144&rft.pages=13135-13144&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c04317&rft_dat=%3Cproquest_cross%3E2555637987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555637987&rft_id=info:pmid/&rfr_iscdi=true