Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates
As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as r...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-08, Vol.15 (8), p.12922-12934 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12934 |
---|---|
container_issue | 8 |
container_start_page | 12922 |
container_title | ACS nano |
container_volume | 15 |
creator | Ying, Junfeng Tan, Xue Lv, Le Wang, Xiangze Gao, Jingyao Yan, Qingwei Ma, Hongbing Nishimura, K Li, He Yu, Jinhong Liu, Te-Huan Xiang, Rong Sun, Rong Jiang, Nan Wong, Chingping Maruyama, Shigeo Lin, Cheng-Te Dai, Wen |
description | As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m–1 K–1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED. |
doi_str_mv | 10.1021/acsnano.1c01332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555351167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555351167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-2bfb3c6b5d9c286806c4ef00e3f2100feea6145ade0e1e897e2bf88beb8789163</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKdnrzkK0i1p1jQ96twPQdgOE7yFNH3dMtukJh3a_97qhjdP7wvv83nwvgjdUjKiJKZjpYNV1o2oJpSx-AwNaMZ4RAR_O__LCb1EVyHsCUlSkfIBchtlKueN3eKl2e6qDq98AR4KvPCq2YEFPPeqhk_n37GxeNa4rw6Xzv_i0Rp8n2tlNeC1q7oafPSoQq8vQbX4yYRgGtUaZ_G6Ui2Ea3RRqirAzWkO0et8tpkuo5fV4nn68BIplvI2ivMyZ5rnSZHpWHBBuJ5ASQiwMqaElACK00miCiBAQWQp9IYQOeQiFRnlbIjujncb7z4OEFpZm6ChqpQFdwgyTpKEJZTytEfHR1R7F4KHUjbe1Mp3khL5U608VStP1fbG_dHoF3LvDt72r_xLfwMhvH46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555351167</pqid></control><display><type>article</type><title>Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates</title><source>American Chemical Society Journals</source><creator>Ying, Junfeng ; Tan, Xue ; Lv, Le ; Wang, Xiangze ; Gao, Jingyao ; Yan, Qingwei ; Ma, Hongbing ; Nishimura, K ; Li, He ; Yu, Jinhong ; Liu, Te-Huan ; Xiang, Rong ; Sun, Rong ; Jiang, Nan ; Wong, Chingping ; Maruyama, Shigeo ; Lin, Cheng-Te ; Dai, Wen</creator><creatorcontrib>Ying, Junfeng ; Tan, Xue ; Lv, Le ; Wang, Xiangze ; Gao, Jingyao ; Yan, Qingwei ; Ma, Hongbing ; Nishimura, K ; Li, He ; Yu, Jinhong ; Liu, Te-Huan ; Xiang, Rong ; Sun, Rong ; Jiang, Nan ; Wong, Chingping ; Maruyama, Shigeo ; Lin, Cheng-Te ; Dai, Wen</creatorcontrib><description>As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m–1 K–1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c01332</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-08, Vol.15 (8), p.12922-12934</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-2bfb3c6b5d9c286806c4ef00e3f2100feea6145ade0e1e897e2bf88beb8789163</citedby><cites>FETCH-LOGICAL-a376t-2bfb3c6b5d9c286806c4ef00e3f2100feea6145ade0e1e897e2bf88beb8789163</cites><orcidid>0000-0003-3556-8053 ; 0000-0002-4775-4948 ; 0000-0003-3694-3070 ; 0000-0001-9134-7568 ; 0000-0001-9719-3563 ; 0000-0003-0601-5150 ; 0000-0002-7090-9610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c01332$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c01332$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ying, Junfeng</creatorcontrib><creatorcontrib>Tan, Xue</creatorcontrib><creatorcontrib>Lv, Le</creatorcontrib><creatorcontrib>Wang, Xiangze</creatorcontrib><creatorcontrib>Gao, Jingyao</creatorcontrib><creatorcontrib>Yan, Qingwei</creatorcontrib><creatorcontrib>Ma, Hongbing</creatorcontrib><creatorcontrib>Nishimura, K</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><creatorcontrib>Liu, Te-Huan</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Wong, Chingping</creatorcontrib><creatorcontrib>Maruyama, Shigeo</creatorcontrib><creatorcontrib>Lin, Cheng-Te</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><title>Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m–1 K–1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKdnrzkK0i1p1jQ96twPQdgOE7yFNH3dMtukJh3a_97qhjdP7wvv83nwvgjdUjKiJKZjpYNV1o2oJpSx-AwNaMZ4RAR_O__LCb1EVyHsCUlSkfIBchtlKueN3eKl2e6qDq98AR4KvPCq2YEFPPeqhk_n37GxeNa4rw6Xzv_i0Rp8n2tlNeC1q7oafPSoQq8vQbX4yYRgGtUaZ_G6Ui2Ea3RRqirAzWkO0et8tpkuo5fV4nn68BIplvI2ivMyZ5rnSZHpWHBBuJ5ASQiwMqaElACK00miCiBAQWQp9IYQOeQiFRnlbIjujncb7z4OEFpZm6ChqpQFdwgyTpKEJZTytEfHR1R7F4KHUjbe1Mp3khL5U608VStP1fbG_dHoF3LvDt72r_xLfwMhvH46</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Ying, Junfeng</creator><creator>Tan, Xue</creator><creator>Lv, Le</creator><creator>Wang, Xiangze</creator><creator>Gao, Jingyao</creator><creator>Yan, Qingwei</creator><creator>Ma, Hongbing</creator><creator>Nishimura, K</creator><creator>Li, He</creator><creator>Yu, Jinhong</creator><creator>Liu, Te-Huan</creator><creator>Xiang, Rong</creator><creator>Sun, Rong</creator><creator>Jiang, Nan</creator><creator>Wong, Chingping</creator><creator>Maruyama, Shigeo</creator><creator>Lin, Cheng-Te</creator><creator>Dai, Wen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3556-8053</orcidid><orcidid>https://orcid.org/0000-0002-4775-4948</orcidid><orcidid>https://orcid.org/0000-0003-3694-3070</orcidid><orcidid>https://orcid.org/0000-0001-9134-7568</orcidid><orcidid>https://orcid.org/0000-0001-9719-3563</orcidid><orcidid>https://orcid.org/0000-0003-0601-5150</orcidid><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid></search><sort><creationdate>20210824</creationdate><title>Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates</title><author>Ying, Junfeng ; Tan, Xue ; Lv, Le ; Wang, Xiangze ; Gao, Jingyao ; Yan, Qingwei ; Ma, Hongbing ; Nishimura, K ; Li, He ; Yu, Jinhong ; Liu, Te-Huan ; Xiang, Rong ; Sun, Rong ; Jiang, Nan ; Wong, Chingping ; Maruyama, Shigeo ; Lin, Cheng-Te ; Dai, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-2bfb3c6b5d9c286806c4ef00e3f2100feea6145ade0e1e897e2bf88beb8789163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ying, Junfeng</creatorcontrib><creatorcontrib>Tan, Xue</creatorcontrib><creatorcontrib>Lv, Le</creatorcontrib><creatorcontrib>Wang, Xiangze</creatorcontrib><creatorcontrib>Gao, Jingyao</creatorcontrib><creatorcontrib>Yan, Qingwei</creatorcontrib><creatorcontrib>Ma, Hongbing</creatorcontrib><creatorcontrib>Nishimura, K</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><creatorcontrib>Liu, Te-Huan</creatorcontrib><creatorcontrib>Xiang, Rong</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Wong, Chingping</creatorcontrib><creatorcontrib>Maruyama, Shigeo</creatorcontrib><creatorcontrib>Lin, Cheng-Te</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ying, Junfeng</au><au>Tan, Xue</au><au>Lv, Le</au><au>Wang, Xiangze</au><au>Gao, Jingyao</au><au>Yan, Qingwei</au><au>Ma, Hongbing</au><au>Nishimura, K</au><au>Li, He</au><au>Yu, Jinhong</au><au>Liu, Te-Huan</au><au>Xiang, Rong</au><au>Sun, Rong</au><au>Jiang, Nan</au><au>Wong, Chingping</au><au>Maruyama, Shigeo</au><au>Lin, Cheng-Te</au><au>Dai, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-08-24</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>12922</spage><epage>12934</epage><pages>12922-12934</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m–1 K–1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.1c01332</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3556-8053</orcidid><orcidid>https://orcid.org/0000-0002-4775-4948</orcidid><orcidid>https://orcid.org/0000-0003-3694-3070</orcidid><orcidid>https://orcid.org/0000-0001-9134-7568</orcidid><orcidid>https://orcid.org/0000-0001-9719-3563</orcidid><orcidid>https://orcid.org/0000-0003-0601-5150</orcidid><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-08, Vol.15 (8), p.12922-12934 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2555351167 |
source | American Chemical Society Journals |
title | Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Highly%20Ordered%20Graphene%20Framework%20in%20Epoxy%20for%20High-Performance%20Polymer-Based%20Heat%20Dissipation%20Plates&rft.jtitle=ACS%20nano&rft.au=Ying,%20Junfeng&rft.date=2021-08-24&rft.volume=15&rft.issue=8&rft.spage=12922&rft.epage=12934&rft.pages=12922-12934&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c01332&rft_dat=%3Cproquest_cross%3E2555351167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555351167&rft_id=info:pmid/&rfr_iscdi=true |