Sample size calculation for recurrent event data with additive rates models

This paper discusses the design of clinical trials where the primary endpoint is a recurrent event with the focus on the sample size calculation. For the problem, a few methods have been proposed but most of them assume a multiplicative treatment effect on the rate or mean number of recurrent events...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical statistics : the journal of the pharmaceutical industry 2022-01, Vol.21 (1), p.89-102
Hauptverfasser: Zhu, Liang, Li, Yimei, Tang, Yongqiang, Shen, Liji, Onar‐Thomas, Arzu, Sun, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 89
container_title Pharmaceutical statistics : the journal of the pharmaceutical industry
container_volume 21
creator Zhu, Liang
Li, Yimei
Tang, Yongqiang
Shen, Liji
Onar‐Thomas, Arzu
Sun, Jianguo
description This paper discusses the design of clinical trials where the primary endpoint is a recurrent event with the focus on the sample size calculation. For the problem, a few methods have been proposed but most of them assume a multiplicative treatment effect on the rate or mean number of recurrent events. In practice, sometimes the additive treatment effect may be preferred or more appealing because of its intuitive clinical meaning and straightforward interpretation compared to a multiplicative relationship. In this paper, new methods are presented and investigated for the sample size calculation based on the additive rates model for superiority, non‐inferiority, and equivalence trials. They allow for flexible baseline rate function, staggered entry, random dropout, and overdispersion in event numbers, and simulation studies show that the proposed methods perform well in a variety of settings. We also illustrate how to use the proposed methods to design a clinical trial based on real data.
doi_str_mv 10.1002/pst.2154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555349189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621185253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3494-3edf8dffb56957b98cf6ade7d19f962ccd09faf0d3260648bd42adc70930d9b63</originalsourceid><addsrcrecordid>eNp1kMtKAzEUQIMotlbBL5CAGzdT85jMTJZSfGFBoXUdMskNTplHTWZa6tc7tVVBcJObxeHcy0HonJIxJYRdL0M7ZlTEB2hIBZcRTSg7_PmTeIBOQlgQQtNMimM04DEnkqZyiJ5mulqWgEPxAdjo0nSlboumxq7x2IPpvIe6xbDavla3Gq-L9g1ra4u2WAH2uoWAq8ZCGU7RkdNlgLP9HKHXu9v55CGaPt8_Tm6mkeGxjCMO1mXWuVwkUqS5zIxLtIXUUulkwoyxRDrtiOUsIUmc5TZm2pqUSE6szBM-Qlc779I37x2EVlVFMFCWuoamC4oJIfpNNJM9evkHXTSdr_vrFEsYpZlggv8KjW9C8ODU0heV9htFidoGVn1gtQ3coxd7YZdXYH_A76I9EO2AdVHC5l-RepnNv4SfOriEmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621185253</pqid></control><display><type>article</type><title>Sample size calculation for recurrent event data with additive rates models</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Zhu, Liang ; Li, Yimei ; Tang, Yongqiang ; Shen, Liji ; Onar‐Thomas, Arzu ; Sun, Jianguo</creator><creatorcontrib>Zhu, Liang ; Li, Yimei ; Tang, Yongqiang ; Shen, Liji ; Onar‐Thomas, Arzu ; Sun, Jianguo</creatorcontrib><description>This paper discusses the design of clinical trials where the primary endpoint is a recurrent event with the focus on the sample size calculation. For the problem, a few methods have been proposed but most of them assume a multiplicative treatment effect on the rate or mean number of recurrent events. In practice, sometimes the additive treatment effect may be preferred or more appealing because of its intuitive clinical meaning and straightforward interpretation compared to a multiplicative relationship. In this paper, new methods are presented and investigated for the sample size calculation based on the additive rates model for superiority, non‐inferiority, and equivalence trials. They allow for flexible baseline rate function, staggered entry, random dropout, and overdispersion in event numbers, and simulation studies show that the proposed methods perform well in a variety of settings. We also illustrate how to use the proposed methods to design a clinical trial based on real data.</description><identifier>ISSN: 1539-1604</identifier><identifier>EISSN: 1539-1612</identifier><identifier>DOI: 10.1002/pst.2154</identifier><identifier>PMID: 34309179</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>additive rates models ; Clinical trials ; Computer Simulation ; Humans ; Models, Statistical ; overdispersion ; Pharmaceuticals ; Recurrence ; recurrent event ; Sample Size ; sample size calculation ; sandwich variance</subject><ispartof>Pharmaceutical statistics : the journal of the pharmaceutical industry, 2022-01, Vol.21 (1), p.89-102</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3494-3edf8dffb56957b98cf6ade7d19f962ccd09faf0d3260648bd42adc70930d9b63</citedby><cites>FETCH-LOGICAL-c3494-3edf8dffb56957b98cf6ade7d19f962ccd09faf0d3260648bd42adc70930d9b63</cites><orcidid>0000-0003-0671-1041 ; 0000-0002-7046-4316 ; 0000-0002-6946-671X ; 0000-0002-8997-8421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpst.2154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpst.2154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34309179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Li, Yimei</creatorcontrib><creatorcontrib>Tang, Yongqiang</creatorcontrib><creatorcontrib>Shen, Liji</creatorcontrib><creatorcontrib>Onar‐Thomas, Arzu</creatorcontrib><creatorcontrib>Sun, Jianguo</creatorcontrib><title>Sample size calculation for recurrent event data with additive rates models</title><title>Pharmaceutical statistics : the journal of the pharmaceutical industry</title><addtitle>Pharm Stat</addtitle><description>This paper discusses the design of clinical trials where the primary endpoint is a recurrent event with the focus on the sample size calculation. For the problem, a few methods have been proposed but most of them assume a multiplicative treatment effect on the rate or mean number of recurrent events. In practice, sometimes the additive treatment effect may be preferred or more appealing because of its intuitive clinical meaning and straightforward interpretation compared to a multiplicative relationship. In this paper, new methods are presented and investigated for the sample size calculation based on the additive rates model for superiority, non‐inferiority, and equivalence trials. They allow for flexible baseline rate function, staggered entry, random dropout, and overdispersion in event numbers, and simulation studies show that the proposed methods perform well in a variety of settings. We also illustrate how to use the proposed methods to design a clinical trial based on real data.</description><subject>additive rates models</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>overdispersion</subject><subject>Pharmaceuticals</subject><subject>Recurrence</subject><subject>recurrent event</subject><subject>Sample Size</subject><subject>sample size calculation</subject><subject>sandwich variance</subject><issn>1539-1604</issn><issn>1539-1612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKAzEUQIMotlbBL5CAGzdT85jMTJZSfGFBoXUdMskNTplHTWZa6tc7tVVBcJObxeHcy0HonJIxJYRdL0M7ZlTEB2hIBZcRTSg7_PmTeIBOQlgQQtNMimM04DEnkqZyiJ5mulqWgEPxAdjo0nSlboumxq7x2IPpvIe6xbDavla3Gq-L9g1ra4u2WAH2uoWAq8ZCGU7RkdNlgLP9HKHXu9v55CGaPt8_Tm6mkeGxjCMO1mXWuVwkUqS5zIxLtIXUUulkwoyxRDrtiOUsIUmc5TZm2pqUSE6szBM-Qlc779I37x2EVlVFMFCWuoamC4oJIfpNNJM9evkHXTSdr_vrFEsYpZlggv8KjW9C8ODU0heV9htFidoGVn1gtQ3coxd7YZdXYH_A76I9EO2AdVHC5l-RepnNv4SfOriEmg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Zhu, Liang</creator><creator>Li, Yimei</creator><creator>Tang, Yongqiang</creator><creator>Shen, Liji</creator><creator>Onar‐Thomas, Arzu</creator><creator>Sun, Jianguo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0671-1041</orcidid><orcidid>https://orcid.org/0000-0002-7046-4316</orcidid><orcidid>https://orcid.org/0000-0002-6946-671X</orcidid><orcidid>https://orcid.org/0000-0002-8997-8421</orcidid></search><sort><creationdate>202201</creationdate><title>Sample size calculation for recurrent event data with additive rates models</title><author>Zhu, Liang ; Li, Yimei ; Tang, Yongqiang ; Shen, Liji ; Onar‐Thomas, Arzu ; Sun, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3494-3edf8dffb56957b98cf6ade7d19f962ccd09faf0d3260648bd42adc70930d9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive rates models</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>overdispersion</topic><topic>Pharmaceuticals</topic><topic>Recurrence</topic><topic>recurrent event</topic><topic>Sample Size</topic><topic>sample size calculation</topic><topic>sandwich variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Li, Yimei</creatorcontrib><creatorcontrib>Tang, Yongqiang</creatorcontrib><creatorcontrib>Shen, Liji</creatorcontrib><creatorcontrib>Onar‐Thomas, Arzu</creatorcontrib><creatorcontrib>Sun, Jianguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Liang</au><au>Li, Yimei</au><au>Tang, Yongqiang</au><au>Shen, Liji</au><au>Onar‐Thomas, Arzu</au><au>Sun, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample size calculation for recurrent event data with additive rates models</atitle><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle><addtitle>Pharm Stat</addtitle><date>2022-01</date><risdate>2022</risdate><volume>21</volume><issue>1</issue><spage>89</spage><epage>102</epage><pages>89-102</pages><issn>1539-1604</issn><eissn>1539-1612</eissn><abstract>This paper discusses the design of clinical trials where the primary endpoint is a recurrent event with the focus on the sample size calculation. For the problem, a few methods have been proposed but most of them assume a multiplicative treatment effect on the rate or mean number of recurrent events. In practice, sometimes the additive treatment effect may be preferred or more appealing because of its intuitive clinical meaning and straightforward interpretation compared to a multiplicative relationship. In this paper, new methods are presented and investigated for the sample size calculation based on the additive rates model for superiority, non‐inferiority, and equivalence trials. They allow for flexible baseline rate function, staggered entry, random dropout, and overdispersion in event numbers, and simulation studies show that the proposed methods perform well in a variety of settings. We also illustrate how to use the proposed methods to design a clinical trial based on real data.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34309179</pmid><doi>10.1002/pst.2154</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0671-1041</orcidid><orcidid>https://orcid.org/0000-0002-7046-4316</orcidid><orcidid>https://orcid.org/0000-0002-6946-671X</orcidid><orcidid>https://orcid.org/0000-0002-8997-8421</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-1604
ispartof Pharmaceutical statistics : the journal of the pharmaceutical industry, 2022-01, Vol.21 (1), p.89-102
issn 1539-1604
1539-1612
language eng
recordid cdi_proquest_miscellaneous_2555349189
source MEDLINE; Wiley Online Library All Journals
subjects additive rates models
Clinical trials
Computer Simulation
Humans
Models, Statistical
overdispersion
Pharmaceuticals
Recurrence
recurrent event
Sample Size
sample size calculation
sandwich variance
title Sample size calculation for recurrent event data with additive rates models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20size%20calculation%20for%20recurrent%20event%20data%20with%20additive%20rates%20models&rft.jtitle=Pharmaceutical%20statistics%20:%20the%20journal%20of%20the%20pharmaceutical%20industry&rft.au=Zhu,%20Liang&rft.date=2022-01&rft.volume=21&rft.issue=1&rft.spage=89&rft.epage=102&rft.pages=89-102&rft.issn=1539-1604&rft.eissn=1539-1612&rft_id=info:doi/10.1002/pst.2154&rft_dat=%3Cproquest_cross%3E2621185253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621185253&rft_id=info:pmid/34309179&rfr_iscdi=true