Association between childhood trauma, parental bonding and antisocial personality disorder in adulthood: A machine learning approach
•Trauma, bonding, substance abuse and antisocial personality were highly associated.•There was a higher prevalence of mental illness in antisocial individuals.•Machine learning was used to predict antisocial personality in male cocaine users.•Emotional and physical abuse were the strongest predictor...
Gespeichert in:
Veröffentlicht in: | Psychiatry research 2021-10, Vol.304, p.114082-114082, Article 114082 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114082 |
---|---|
container_issue | |
container_start_page | 114082 |
container_title | Psychiatry research |
container_volume | 304 |
creator | Schorr, Manuela Teixeira Quadors dos Santos, Barbara Tietbohl Martins Feiten, Jacson Gabriel Sordi, Anne Orgler Pessi, Cristina Von Diemen, Lisia Passos, Ives Cavalcante Telles, Lisieux Elaine de Borba Hauck, Simone |
description | •Trauma, bonding, substance abuse and antisocial personality were highly associated.•There was a higher prevalence of mental illness in antisocial individuals.•Machine learning was used to predict antisocial personality in male cocaine users.•Emotional and physical abuse were the strongest predictors for ASPD.•Paternal bonding was a stronger predictor for ASPD than maternal bonding.
Childhood trauma (CT) and parental bonding (PB) have been correlated with later antisocial personality disorder (ASPD). Aiming to better understand this complex interaction we analyzed the data from a cross-sectional study that evaluated 346 male inpatient cocaine users, using both traditional statistical analysis and machine learning (ML) approaches. Childhood Trauma Questionnaire (CTQ), Parental Bonding Instrument (PBI), and Mini International Neuropsychiatric Interview (MINI) were applied. We found a markedly higher prevalence of mental illness in the ASPD group. The ML method and the traditional analysis showed that emotional and physical abuse were the factors with the strongest relationship with ASPD. Also, there were discrepancies between the findings of both methods regarding physical neglect and paternal care. Although this study does not allow definitive answers in this matter, we do propose that these two methods can aid in better comprehending how multiple variables interact with each other in the development of psychological disorders. |
doi_str_mv | 10.1016/j.psychres.2021.114082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555334173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165178121003796</els_id><sourcerecordid>2555334173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-7cd476380e39f2e4965acf8afb40f6fd8a6459463a9c28f1678049d584c5b4f23</originalsourceid><addsrcrecordid>eNqFkE9vEzEQxS0EEqH0KyAfObCp_-56ORFVtCBV4kLPlmOPiSPHXmwHlDsfHKeBcw-jkZ7e-43mIfSOkjUldLzZr5d6srsCdc0Io2tKBVHsBVpRNbFhooy_RKtulAOdFH2N3tS6J6Q753mF_mxqzTaYFnLCW2i_ARK2uxDdLmeHWzHHg_mAF1MgNRPxNicX0g9skuvTwlM44gVKzcnE0E7YdbE4KDgkbNwxtjPpI97gg-ngBDiCKekJsiwld_EteuVNrHD9b1-hx7vP32-_DA_f7r_ebh4Gy4Vsw2SdmEauCPDZMxDzKI31yvitIH70TplRyFmM3MyWKU_HSRExO6mElVvhGb9C7y_cfvbnEWrTh1AtxGgS5GPVTErJuaAT79bxYrUl11rA66WEgyknTYk-1673-n_t-ly7vtTeg58uQeiP_ApQdLUBkgUXCtimXQ7PIf4C1OiSDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555334173</pqid></control><display><type>article</type><title>Association between childhood trauma, parental bonding and antisocial personality disorder in adulthood: A machine learning approach</title><source>Elsevier ScienceDirect Journals</source><creator>Schorr, Manuela Teixeira ; Quadors dos Santos, Barbara Tietbohl Martins ; Feiten, Jacson Gabriel ; Sordi, Anne Orgler ; Pessi, Cristina ; Von Diemen, Lisia ; Passos, Ives Cavalcante ; Telles, Lisieux Elaine de Borba ; Hauck, Simone</creator><creatorcontrib>Schorr, Manuela Teixeira ; Quadors dos Santos, Barbara Tietbohl Martins ; Feiten, Jacson Gabriel ; Sordi, Anne Orgler ; Pessi, Cristina ; Von Diemen, Lisia ; Passos, Ives Cavalcante ; Telles, Lisieux Elaine de Borba ; Hauck, Simone</creatorcontrib><description>•Trauma, bonding, substance abuse and antisocial personality were highly associated.•There was a higher prevalence of mental illness in antisocial individuals.•Machine learning was used to predict antisocial personality in male cocaine users.•Emotional and physical abuse were the strongest predictors for ASPD.•Paternal bonding was a stronger predictor for ASPD than maternal bonding.
Childhood trauma (CT) and parental bonding (PB) have been correlated with later antisocial personality disorder (ASPD). Aiming to better understand this complex interaction we analyzed the data from a cross-sectional study that evaluated 346 male inpatient cocaine users, using both traditional statistical analysis and machine learning (ML) approaches. Childhood Trauma Questionnaire (CTQ), Parental Bonding Instrument (PBI), and Mini International Neuropsychiatric Interview (MINI) were applied. We found a markedly higher prevalence of mental illness in the ASPD group. The ML method and the traditional analysis showed that emotional and physical abuse were the factors with the strongest relationship with ASPD. Also, there were discrepancies between the findings of both methods regarding physical neglect and paternal care. Although this study does not allow definitive answers in this matter, we do propose that these two methods can aid in better comprehending how multiple variables interact with each other in the development of psychological disorders.</description><identifier>ISSN: 0165-1781</identifier><identifier>EISSN: 1872-7123</identifier><identifier>DOI: 10.1016/j.psychres.2021.114082</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antisocial personality disorder ; Child abuse ; Machine learning ; Parental bonding ; Statistical analysis</subject><ispartof>Psychiatry research, 2021-10, Vol.304, p.114082-114082, Article 114082</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-7cd476380e39f2e4965acf8afb40f6fd8a6459463a9c28f1678049d584c5b4f23</citedby><cites>FETCH-LOGICAL-c345t-7cd476380e39f2e4965acf8afb40f6fd8a6459463a9c28f1678049d584c5b4f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165178121003796$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Schorr, Manuela Teixeira</creatorcontrib><creatorcontrib>Quadors dos Santos, Barbara Tietbohl Martins</creatorcontrib><creatorcontrib>Feiten, Jacson Gabriel</creatorcontrib><creatorcontrib>Sordi, Anne Orgler</creatorcontrib><creatorcontrib>Pessi, Cristina</creatorcontrib><creatorcontrib>Von Diemen, Lisia</creatorcontrib><creatorcontrib>Passos, Ives Cavalcante</creatorcontrib><creatorcontrib>Telles, Lisieux Elaine de Borba</creatorcontrib><creatorcontrib>Hauck, Simone</creatorcontrib><title>Association between childhood trauma, parental bonding and antisocial personality disorder in adulthood: A machine learning approach</title><title>Psychiatry research</title><description>•Trauma, bonding, substance abuse and antisocial personality were highly associated.•There was a higher prevalence of mental illness in antisocial individuals.•Machine learning was used to predict antisocial personality in male cocaine users.•Emotional and physical abuse were the strongest predictors for ASPD.•Paternal bonding was a stronger predictor for ASPD than maternal bonding.
Childhood trauma (CT) and parental bonding (PB) have been correlated with later antisocial personality disorder (ASPD). Aiming to better understand this complex interaction we analyzed the data from a cross-sectional study that evaluated 346 male inpatient cocaine users, using both traditional statistical analysis and machine learning (ML) approaches. Childhood Trauma Questionnaire (CTQ), Parental Bonding Instrument (PBI), and Mini International Neuropsychiatric Interview (MINI) were applied. We found a markedly higher prevalence of mental illness in the ASPD group. The ML method and the traditional analysis showed that emotional and physical abuse were the factors with the strongest relationship with ASPD. Also, there were discrepancies between the findings of both methods regarding physical neglect and paternal care. Although this study does not allow definitive answers in this matter, we do propose that these two methods can aid in better comprehending how multiple variables interact with each other in the development of psychological disorders.</description><subject>Antisocial personality disorder</subject><subject>Child abuse</subject><subject>Machine learning</subject><subject>Parental bonding</subject><subject>Statistical analysis</subject><issn>0165-1781</issn><issn>1872-7123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9vEzEQxS0EEqH0KyAfObCp_-56ORFVtCBV4kLPlmOPiSPHXmwHlDsfHKeBcw-jkZ7e-43mIfSOkjUldLzZr5d6srsCdc0Io2tKBVHsBVpRNbFhooy_RKtulAOdFH2N3tS6J6Q753mF_mxqzTaYFnLCW2i_ARK2uxDdLmeHWzHHg_mAF1MgNRPxNicX0g9skuvTwlM44gVKzcnE0E7YdbE4KDgkbNwxtjPpI97gg-ngBDiCKekJsiwld_EteuVNrHD9b1-hx7vP32-_DA_f7r_ebh4Gy4Vsw2SdmEauCPDZMxDzKI31yvitIH70TplRyFmM3MyWKU_HSRExO6mElVvhGb9C7y_cfvbnEWrTh1AtxGgS5GPVTErJuaAT79bxYrUl11rA66WEgyknTYk-1673-n_t-ly7vtTeg58uQeiP_ApQdLUBkgUXCtimXQ7PIf4C1OiSDA</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Schorr, Manuela Teixeira</creator><creator>Quadors dos Santos, Barbara Tietbohl Martins</creator><creator>Feiten, Jacson Gabriel</creator><creator>Sordi, Anne Orgler</creator><creator>Pessi, Cristina</creator><creator>Von Diemen, Lisia</creator><creator>Passos, Ives Cavalcante</creator><creator>Telles, Lisieux Elaine de Borba</creator><creator>Hauck, Simone</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Association between childhood trauma, parental bonding and antisocial personality disorder in adulthood: A machine learning approach</title><author>Schorr, Manuela Teixeira ; Quadors dos Santos, Barbara Tietbohl Martins ; Feiten, Jacson Gabriel ; Sordi, Anne Orgler ; Pessi, Cristina ; Von Diemen, Lisia ; Passos, Ives Cavalcante ; Telles, Lisieux Elaine de Borba ; Hauck, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-7cd476380e39f2e4965acf8afb40f6fd8a6459463a9c28f1678049d584c5b4f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antisocial personality disorder</topic><topic>Child abuse</topic><topic>Machine learning</topic><topic>Parental bonding</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schorr, Manuela Teixeira</creatorcontrib><creatorcontrib>Quadors dos Santos, Barbara Tietbohl Martins</creatorcontrib><creatorcontrib>Feiten, Jacson Gabriel</creatorcontrib><creatorcontrib>Sordi, Anne Orgler</creatorcontrib><creatorcontrib>Pessi, Cristina</creatorcontrib><creatorcontrib>Von Diemen, Lisia</creatorcontrib><creatorcontrib>Passos, Ives Cavalcante</creatorcontrib><creatorcontrib>Telles, Lisieux Elaine de Borba</creatorcontrib><creatorcontrib>Hauck, Simone</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Psychiatry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schorr, Manuela Teixeira</au><au>Quadors dos Santos, Barbara Tietbohl Martins</au><au>Feiten, Jacson Gabriel</au><au>Sordi, Anne Orgler</au><au>Pessi, Cristina</au><au>Von Diemen, Lisia</au><au>Passos, Ives Cavalcante</au><au>Telles, Lisieux Elaine de Borba</au><au>Hauck, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association between childhood trauma, parental bonding and antisocial personality disorder in adulthood: A machine learning approach</atitle><jtitle>Psychiatry research</jtitle><date>2021-10</date><risdate>2021</risdate><volume>304</volume><spage>114082</spage><epage>114082</epage><pages>114082-114082</pages><artnum>114082</artnum><issn>0165-1781</issn><eissn>1872-7123</eissn><abstract>•Trauma, bonding, substance abuse and antisocial personality were highly associated.•There was a higher prevalence of mental illness in antisocial individuals.•Machine learning was used to predict antisocial personality in male cocaine users.•Emotional and physical abuse were the strongest predictors for ASPD.•Paternal bonding was a stronger predictor for ASPD than maternal bonding.
Childhood trauma (CT) and parental bonding (PB) have been correlated with later antisocial personality disorder (ASPD). Aiming to better understand this complex interaction we analyzed the data from a cross-sectional study that evaluated 346 male inpatient cocaine users, using both traditional statistical analysis and machine learning (ML) approaches. Childhood Trauma Questionnaire (CTQ), Parental Bonding Instrument (PBI), and Mini International Neuropsychiatric Interview (MINI) were applied. We found a markedly higher prevalence of mental illness in the ASPD group. The ML method and the traditional analysis showed that emotional and physical abuse were the factors with the strongest relationship with ASPD. Also, there were discrepancies between the findings of both methods regarding physical neglect and paternal care. Although this study does not allow definitive answers in this matter, we do propose that these two methods can aid in better comprehending how multiple variables interact with each other in the development of psychological disorders.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.psychres.2021.114082</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1781 |
ispartof | Psychiatry research, 2021-10, Vol.304, p.114082-114082, Article 114082 |
issn | 0165-1781 1872-7123 |
language | eng |
recordid | cdi_proquest_miscellaneous_2555334173 |
source | Elsevier ScienceDirect Journals |
subjects | Antisocial personality disorder Child abuse Machine learning Parental bonding Statistical analysis |
title | Association between childhood trauma, parental bonding and antisocial personality disorder in adulthood: A machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20between%20childhood%20trauma,%20parental%20bonding%20and%20antisocial%20personality%20disorder%20in%20adulthood:%20A%20machine%20learning%20approach&rft.jtitle=Psychiatry%20research&rft.au=Schorr,%20Manuela%20Teixeira&rft.date=2021-10&rft.volume=304&rft.spage=114082&rft.epage=114082&rft.pages=114082-114082&rft.artnum=114082&rft.issn=0165-1781&rft.eissn=1872-7123&rft_id=info:doi/10.1016/j.psychres.2021.114082&rft_dat=%3Cproquest_cross%3E2555334173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555334173&rft_id=info:pmid/&rft_els_id=S0165178121003796&rfr_iscdi=true |