Solvent‐mediated forces in protein dielectrophoresis

DEP is an established method to manipulate micrometer‐sized particles, but standard continuum theories predict only negligible effects for nanometer‐sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2021-10, Vol.42 (20), p.2060-2069
Hauptverfasser: Waskasi, Morteza M., Lazaric, Aleksandar, Heyden, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2069
container_issue 20
container_start_page 2060
container_title Electrophoresis
container_volume 42
creator Waskasi, Morteza M.
Lazaric, Aleksandar
Heyden, Matthias
description DEP is an established method to manipulate micrometer‐sized particles, but standard continuum theories predict only negligible effects for nanometer‐sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein–water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization‐induced changes in the protein solvation free energy, which result in a solvent‐mediated contribution to dielectrophoretic forces. We quantify solvent‐mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein–water dipole–dipole interactions. The magnitude of solvent‐mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent‐mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein–water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.
doi_str_mv 10.1002/elps.202100087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555114286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555114286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-72fde94e61bfa77e2209f1b93d7d47cfe9f4f7864eac34e0a14ca5843e768e5f3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotla3LqXgxs3U3CbJLKXUCxQUquuQZk5wynRSkxmlOx_BZ_RJTGntwo2rnwPf-c_hQ-ic4BHBmF5DvYojimkasJIHqE9ySjMqFDtEfUwky7BieQ-dxLhICC84P0Y9xhmmolB9JGa-foem_f78WkJZmRbKofPBQhxWzXAVfAspywpqsG3wq1cfIFbxFB05U0c42-UAvdxOnsf32fTx7mF8M80sE0plkroSCg6CzJ2REijFhSPzgpWy5NI6KBx3UgkOxjIO2BBuTa44AykU5I4N0NW2N33y1kFs9bKKFuraNOC7qGme54RwqkRCL_-gC9-FJn2XKJUOJ0kkUaMtZYOPMYDTq1AtTVhrgvXGqN4Y1XujaeFiV9vNk6E9_qswAXwLfFQ1rP-p05Pp00xyqdgP4KiCGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582090211</pqid></control><display><type>article</type><title>Solvent‐mediated forces in protein dielectrophoresis</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Waskasi, Morteza M. ; Lazaric, Aleksandar ; Heyden, Matthias</creator><creatorcontrib>Waskasi, Morteza M. ; Lazaric, Aleksandar ; Heyden, Matthias</creatorcontrib><description>DEP is an established method to manipulate micrometer‐sized particles, but standard continuum theories predict only negligible effects for nanometer‐sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein–water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization‐induced changes in the protein solvation free energy, which result in a solvent‐mediated contribution to dielectrophoretic forces. We quantify solvent‐mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein–water dipole–dipole interactions. The magnitude of solvent‐mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent‐mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein–water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202100087</identifier><identifier>PMID: 34302698</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical potential ; Dielectrophoresis ; Dipole interactions ; Dipole moments ; Electric fields ; Electricity ; Electrophoresis ; Free energy ; Molecular dynamics ; Molecular Dynamics Simulation ; Polarization ; Proteins ; Solvation ; Solvents ; Thermodynamics ; Water</subject><ispartof>Electrophoresis, 2021-10, Vol.42 (20), p.2060-2069</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-72fde94e61bfa77e2209f1b93d7d47cfe9f4f7864eac34e0a14ca5843e768e5f3</citedby><cites>FETCH-LOGICAL-c3688-72fde94e61bfa77e2209f1b93d7d47cfe9f4f7864eac34e0a14ca5843e768e5f3</cites><orcidid>0000-0002-7956-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.202100087$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.202100087$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34302698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waskasi, Morteza M.</creatorcontrib><creatorcontrib>Lazaric, Aleksandar</creatorcontrib><creatorcontrib>Heyden, Matthias</creatorcontrib><title>Solvent‐mediated forces in protein dielectrophoresis</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>DEP is an established method to manipulate micrometer‐sized particles, but standard continuum theories predict only negligible effects for nanometer‐sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein–water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization‐induced changes in the protein solvation free energy, which result in a solvent‐mediated contribution to dielectrophoretic forces. We quantify solvent‐mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein–water dipole–dipole interactions. The magnitude of solvent‐mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent‐mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein–water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.</description><subject>Chemical potential</subject><subject>Dielectrophoresis</subject><subject>Dipole interactions</subject><subject>Dipole moments</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Electrophoresis</subject><subject>Free energy</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Polarization</subject><subject>Proteins</subject><subject>Solvation</subject><subject>Solvents</subject><subject>Thermodynamics</subject><subject>Water</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKAzEUhoMotla3LqXgxs3U3CbJLKXUCxQUquuQZk5wynRSkxmlOx_BZ_RJTGntwo2rnwPf-c_hQ-ic4BHBmF5DvYojimkasJIHqE9ySjMqFDtEfUwky7BieQ-dxLhICC84P0Y9xhmmolB9JGa-foem_f78WkJZmRbKofPBQhxWzXAVfAspywpqsG3wq1cfIFbxFB05U0c42-UAvdxOnsf32fTx7mF8M80sE0plkroSCg6CzJ2REijFhSPzgpWy5NI6KBx3UgkOxjIO2BBuTa44AykU5I4N0NW2N33y1kFs9bKKFuraNOC7qGme54RwqkRCL_-gC9-FJn2XKJUOJ0kkUaMtZYOPMYDTq1AtTVhrgvXGqN4Y1XujaeFiV9vNk6E9_qswAXwLfFQ1rP-p05Pp00xyqdgP4KiCGQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Waskasi, Morteza M.</creator><creator>Lazaric, Aleksandar</creator><creator>Heyden, Matthias</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7956-5287</orcidid></search><sort><creationdate>202110</creationdate><title>Solvent‐mediated forces in protein dielectrophoresis</title><author>Waskasi, Morteza M. ; Lazaric, Aleksandar ; Heyden, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-72fde94e61bfa77e2209f1b93d7d47cfe9f4f7864eac34e0a14ca5843e768e5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical potential</topic><topic>Dielectrophoresis</topic><topic>Dipole interactions</topic><topic>Dipole moments</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Electrophoresis</topic><topic>Free energy</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Polarization</topic><topic>Proteins</topic><topic>Solvation</topic><topic>Solvents</topic><topic>Thermodynamics</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waskasi, Morteza M.</creatorcontrib><creatorcontrib>Lazaric, Aleksandar</creatorcontrib><creatorcontrib>Heyden, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waskasi, Morteza M.</au><au>Lazaric, Aleksandar</au><au>Heyden, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent‐mediated forces in protein dielectrophoresis</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2021-10</date><risdate>2021</risdate><volume>42</volume><issue>20</issue><spage>2060</spage><epage>2069</epage><pages>2060-2069</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>DEP is an established method to manipulate micrometer‐sized particles, but standard continuum theories predict only negligible effects for nanometer‐sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein–water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization‐induced changes in the protein solvation free energy, which result in a solvent‐mediated contribution to dielectrophoretic forces. We quantify solvent‐mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein–water dipole–dipole interactions. The magnitude of solvent‐mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent‐mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein–water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34302698</pmid><doi>10.1002/elps.202100087</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7956-5287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2021-10, Vol.42 (20), p.2060-2069
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_2555114286
source MEDLINE; Access via Wiley Online Library
subjects Chemical potential
Dielectrophoresis
Dipole interactions
Dipole moments
Electric fields
Electricity
Electrophoresis
Free energy
Molecular dynamics
Molecular Dynamics Simulation
Polarization
Proteins
Solvation
Solvents
Thermodynamics
Water
title Solvent‐mediated forces in protein dielectrophoresis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%E2%80%90mediated%20forces%20in%20protein%20dielectrophoresis&rft.jtitle=Electrophoresis&rft.au=Waskasi,%20Morteza%20M.&rft.date=2021-10&rft.volume=42&rft.issue=20&rft.spage=2060&rft.epage=2069&rft.pages=2060-2069&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202100087&rft_dat=%3Cproquest_cross%3E2555114286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582090211&rft_id=info:pmid/34302698&rfr_iscdi=true