Consequences of whole genome duplication for 2n pollen performance

The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant reproduction 2021-12, Vol.34 (4), p.321-334
1. Verfasser: Williams, Joseph H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 4
container_start_page 321
container_title Plant reproduction
container_volume 34
creator Williams, Joseph H.
description The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo- 2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.
doi_str_mv 10.1007/s00497-021-00426-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555113454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681271951</galeid><sourcerecordid>A681271951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-98f8f7f9d1d79a6454a27c63ff5bcc64334ce0d353916dbbf62b4b3a938a95943</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EolXpH2CBIrGBRYrfjpflikelSkg81pbjjC-pEvtiJyr01zOQUlQWyIsZjb9zNKNDyFNGzxil5lWlVFrTUs5a7Lhubx6QY86sbI3V7OFdr8QROa31ilLKqGCKysfkSEhBuRLqmLze5VTh2wopQG1ybK6_5gmaPaQ8QzOsh2kMfhlzamIuDU_NIU8TYIGCg9mj7Al5FP1U4fS2npAvb9983r1vLz-8u9idX7ZBym5pbRe7aKId2GCs11JJz03QIkbVh6ClEDIAHYQSlumh76PmveyFt6LzVlkpTsiLzfdQMi5cFzePNcA0-QR5rY4rpRgTaIzo83_Qq7yWhNshZbkxmiuN1NlG7f0EbkwxL8UHfAPMY8gJ4ojzc90xbphVDAUv7wmQWeD7svdrre7i08f7LN_YUHKtBaI7lHH25Ydj1P1K0G0JOkzQ_U7Q3aDo2e3eaz_DcCf5kxcCYgMqfqU9lL-H_cf2J4SdpBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592776256</pqid></control><display><type>article</type><title>Consequences of whole genome duplication for 2n pollen performance</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Williams, Joseph H.</creator><creatorcontrib>Williams, Joseph H.</creatorcontrib><description>The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo- 2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.</description><identifier>ISSN: 2194-7953</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-021-00426-z</identifier><identifier>PMID: 34302535</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Apertures ; Autotetraploid ; Biomedical and Life Sciences ; Cell Biology ; Diploids ; Diploidy ; Epigenetic inheritance ; Epigenetics ; Evolution of Plant Reproduction ; Gene dosage ; Gene Duplication ; Gene expression ; Gene regulation ; Genomes ; Genomics ; Heterosis ; Heterozygosity ; Humans ; Life Sciences ; Magnoliopsida - genetics ; Phenotypes ; Plant Sciences ; Pollen ; Pollen - genetics ; Polyploidy ; Provisioning ; Reproduction (copying) ; Review</subject><ispartof>Plant reproduction, 2021-12, Vol.34 (4), p.321-334</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-98f8f7f9d1d79a6454a27c63ff5bcc64334ce0d353916dbbf62b4b3a938a95943</citedby><cites>FETCH-LOGICAL-c448t-98f8f7f9d1d79a6454a27c63ff5bcc64334ce0d353916dbbf62b4b3a938a95943</cites><orcidid>0000-0002-1206-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00497-021-00426-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00497-021-00426-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34302535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Joseph H.</creatorcontrib><title>Consequences of whole genome duplication for 2n pollen performance</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo- 2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.</description><subject>Agriculture</subject><subject>Apertures</subject><subject>Autotetraploid</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Diploids</subject><subject>Diploidy</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Evolution of Plant Reproduction</subject><subject>Gene dosage</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heterosis</subject><subject>Heterozygosity</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Magnoliopsida - genetics</subject><subject>Phenotypes</subject><subject>Plant Sciences</subject><subject>Pollen</subject><subject>Pollen - genetics</subject><subject>Polyploidy</subject><subject>Provisioning</subject><subject>Reproduction (copying)</subject><subject>Review</subject><issn>2194-7953</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQhS0EolXpH2CBIrGBRYrfjpflikelSkg81pbjjC-pEvtiJyr01zOQUlQWyIsZjb9zNKNDyFNGzxil5lWlVFrTUs5a7Lhubx6QY86sbI3V7OFdr8QROa31ilLKqGCKysfkSEhBuRLqmLze5VTh2wopQG1ybK6_5gmaPaQ8QzOsh2kMfhlzamIuDU_NIU8TYIGCg9mj7Al5FP1U4fS2npAvb9983r1vLz-8u9idX7ZBym5pbRe7aKId2GCs11JJz03QIkbVh6ClEDIAHYQSlumh76PmveyFt6LzVlkpTsiLzfdQMi5cFzePNcA0-QR5rY4rpRgTaIzo83_Qq7yWhNshZbkxmiuN1NlG7f0EbkwxL8UHfAPMY8gJ4ojzc90xbphVDAUv7wmQWeD7svdrre7i08f7LN_YUHKtBaI7lHH25Ydj1P1K0G0JOkzQ_U7Q3aDo2e3eaz_DcCf5kxcCYgMqfqU9lL-H_cf2J4SdpBg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Williams, Joseph H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1206-5667</orcidid></search><sort><creationdate>20211201</creationdate><title>Consequences of whole genome duplication for 2n pollen performance</title><author>Williams, Joseph H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-98f8f7f9d1d79a6454a27c63ff5bcc64334ce0d353916dbbf62b4b3a938a95943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Apertures</topic><topic>Autotetraploid</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Diploids</topic><topic>Diploidy</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Evolution of Plant Reproduction</topic><topic>Gene dosage</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heterosis</topic><topic>Heterozygosity</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Magnoliopsida - genetics</topic><topic>Phenotypes</topic><topic>Plant Sciences</topic><topic>Pollen</topic><topic>Pollen - genetics</topic><topic>Polyploidy</topic><topic>Provisioning</topic><topic>Reproduction (copying)</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Joseph H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Joseph H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consequences of whole genome duplication for 2n pollen performance</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>34</volume><issue>4</issue><spage>321</spage><epage>334</epage><pages>321-334</pages><issn>2194-7953</issn><eissn>2194-7961</eissn><abstract>The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo- 2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34302535</pmid><doi>10.1007/s00497-021-00426-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1206-5667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-7953
ispartof Plant reproduction, 2021-12, Vol.34 (4), p.321-334
issn 2194-7953
2194-7961
language eng
recordid cdi_proquest_miscellaneous_2555113454
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Apertures
Autotetraploid
Biomedical and Life Sciences
Cell Biology
Diploids
Diploidy
Epigenetic inheritance
Epigenetics
Evolution of Plant Reproduction
Gene dosage
Gene Duplication
Gene expression
Gene regulation
Genomes
Genomics
Heterosis
Heterozygosity
Humans
Life Sciences
Magnoliopsida - genetics
Phenotypes
Plant Sciences
Pollen
Pollen - genetics
Polyploidy
Provisioning
Reproduction (copying)
Review
title Consequences of whole genome duplication for 2n pollen performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consequences%20of%20whole%20genome%20duplication%20for%202n%20pollen%20performance&rft.jtitle=Plant%20reproduction&rft.au=Williams,%20Joseph%20H.&rft.date=2021-12-01&rft.volume=34&rft.issue=4&rft.spage=321&rft.epage=334&rft.pages=321-334&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-021-00426-z&rft_dat=%3Cgale_proqu%3EA681271951%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592776256&rft_id=info:pmid/34302535&rft_galeid=A681271951&rfr_iscdi=true