Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT
With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobil...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (14), p.4798, Article 4798 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 4798 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Chen, Fangni Wang, Anding Zhang, Yu Ni, Zhengwei Hua, Jingyu |
description | With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed. |
doi_str_mv | 10.3390/s21144798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555109170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_64cff297148f43fe991181b47de84039</doaj_id><sourcerecordid>2555109170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-37bfc4b1eb843edf7673cd1bc393cec3412fe04347cab5fb9ea812719b711ea73</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EomXhwD-IxAWEAv5KbF-QSrSFlcqXuqhHy3bGwUs2XuyEqv-ebLdaUU6cPPI87zujeRF6TvAbxhR-mykhnAslH6BTwikvJaX44V_1CXqS8wZjyhiTj9EJ4wzjislT9G05QOpuiqX3wQUYxuLyavV1Xbw3GdriU7Shh2LZdlA0cbubxjB0xXkyW7iO6WfhYyquLj-XZzmHPM6CVVw_RY-86TM8u3sX6Pv5ct18LC--fFg1Zxel47weSyasd9wSsJIzaL2oBXMtsY4p5sAxTqgHzBkXztjKWwVGEiqIsoIQMIIt0Org20az0bsUtibd6GiCvv2IqdMmjcH1oGvuvKdKEC49Zx6UIkQSy0ULkuN54AK9O3jtJruF1s13SKa_Z3q_M4Qfuou_tWRYSU5ng5d3Bin-miCPehuyg743A8Qpa1pVFcGKCDyjL_5BN3FKw3yqPcVrRcXtRq8OlEsx5wT-uAzBeh-6PoY-s_LAXoONPu9jdHDkMca1EFhU9Vxh0oTRjCEOTZyGcZa-_n8p-wO9BLvx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554692739</pqid></control><display><type>article</type><title>Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Fangni ; Wang, Anding ; Zhang, Yu ; Ni, Zhengwei ; Hua, Jingyu</creator><creatorcontrib>Chen, Fangni ; Wang, Anding ; Zhang, Yu ; Ni, Zhengwei ; Hua, Jingyu</creatorcontrib><description>With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21144798</identifier><identifier>PMID: 34300538</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Chemistry ; Chemistry, Analytical ; Communications systems ; Data transmission ; Energy consumption ; Energy efficiency ; Energy harvesting ; energy minimization ; Engineering ; Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Internet of Things ; IoT ; mobile edge computaing ; Optimization ; Physical Sciences ; Power management ; Receivers & amplifiers ; Science & Technology ; Sensors ; simultaneous wireless information and power transfer ; Technology ; Technology transfer ; Transmission rate (communications) ; Variables ; Wireless networks ; wireless sensing network</subject><ispartof>Sensors (Basel, Switzerland), 2021-07, Vol.21 (14), p.4798, Article 4798</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000677075600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c446t-37bfc4b1eb843edf7673cd1bc393cec3412fe04347cab5fb9ea812719b711ea73</citedby><cites>FETCH-LOGICAL-c446t-37bfc4b1eb843edf7673cd1bc393cec3412fe04347cab5fb9ea812719b711ea73</cites><orcidid>0000-0002-4518-585X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309842/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309842/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Chen, Fangni</creatorcontrib><creatorcontrib>Wang, Anding</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ni, Zhengwei</creatorcontrib><creatorcontrib>Hua, Jingyu</creatorcontrib><title>Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><description>With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.</description><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Communications systems</subject><subject>Data transmission</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>energy minimization</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Instruments & Instrumentation</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>mobile edge computaing</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Power management</subject><subject>Receivers & amplifiers</subject><subject>Science & Technology</subject><subject>Sensors</subject><subject>simultaneous wireless information and power transfer</subject><subject>Technology</subject><subject>Technology transfer</subject><subject>Transmission rate (communications)</subject><subject>Variables</subject><subject>Wireless networks</subject><subject>wireless sensing network</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhi0EomXhwD-IxAWEAv5KbF-QSrSFlcqXuqhHy3bGwUs2XuyEqv-ebLdaUU6cPPI87zujeRF6TvAbxhR-mykhnAslH6BTwikvJaX44V_1CXqS8wZjyhiTj9EJ4wzjislT9G05QOpuiqX3wQUYxuLyavV1Xbw3GdriU7Shh2LZdlA0cbubxjB0xXkyW7iO6WfhYyquLj-XZzmHPM6CVVw_RY-86TM8u3sX6Pv5ct18LC--fFg1Zxel47weSyasd9wSsJIzaL2oBXMtsY4p5sAxTqgHzBkXztjKWwVGEiqIsoIQMIIt0Org20az0bsUtibd6GiCvv2IqdMmjcH1oGvuvKdKEC49Zx6UIkQSy0ULkuN54AK9O3jtJruF1s13SKa_Z3q_M4Qfuou_tWRYSU5ng5d3Bin-miCPehuyg743A8Qpa1pVFcGKCDyjL_5BN3FKw3yqPcVrRcXtRq8OlEsx5wT-uAzBeh-6PoY-s_LAXoONPu9jdHDkMca1EFhU9Vxh0oTRjCEOTZyGcZa-_n8p-wO9BLvx</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Chen, Fangni</creator><creator>Wang, Anding</creator><creator>Zhang, Yu</creator><creator>Ni, Zhengwei</creator><creator>Hua, Jingyu</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4518-585X</orcidid></search><sort><creationdate>20210714</creationdate><title>Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT</title><author>Chen, Fangni ; Wang, Anding ; Zhang, Yu ; Ni, Zhengwei ; Hua, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-37bfc4b1eb843edf7673cd1bc393cec3412fe04347cab5fb9ea812719b711ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Communications systems</topic><topic>Data transmission</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>energy minimization</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Instruments & Instrumentation</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>mobile edge computaing</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Power management</topic><topic>Receivers & amplifiers</topic><topic>Science & Technology</topic><topic>Sensors</topic><topic>simultaneous wireless information and power transfer</topic><topic>Technology</topic><topic>Technology transfer</topic><topic>Transmission rate (communications)</topic><topic>Variables</topic><topic>Wireless networks</topic><topic>wireless sensing network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fangni</creatorcontrib><creatorcontrib>Wang, Anding</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ni, Zhengwei</creatorcontrib><creatorcontrib>Hua, Jingyu</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fangni</au><au>Wang, Anding</au><au>Zhang, Yu</au><au>Ni, Zhengwei</au><au>Hua, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><date>2021-07-14</date><risdate>2021</risdate><volume>21</volume><issue>14</issue><spage>4798</spage><pages>4798-</pages><artnum>4798</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34300538</pmid><doi>10.3390/s21144798</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4518-585X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-07, Vol.21 (14), p.4798, Article 4798 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_proquest_miscellaneous_2555109170 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Chemistry Chemistry, Analytical Communications systems Data transmission Energy consumption Energy efficiency Energy harvesting energy minimization Engineering Engineering, Electrical & Electronic Instruments & Instrumentation Internet of Things IoT mobile edge computaing Optimization Physical Sciences Power management Receivers & amplifiers Science & Technology Sensors simultaneous wireless information and power transfer Technology Technology transfer Transmission rate (communications) Variables Wireless networks wireless sensing network |
title | Energy Efficient SWIPT Based Mobile Edge Computing Framework for WSN-Assisted IoT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Efficient%20SWIPT%20Based%20Mobile%20Edge%20Computing%20Framework%20for%20WSN-Assisted%20IoT&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Chen,%20Fangni&rft.date=2021-07-14&rft.volume=21&rft.issue=14&rft.spage=4798&rft.pages=4798-&rft.artnum=4798&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21144798&rft_dat=%3Cproquest_cross%3E2555109170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554692739&rft_id=info:pmid/34300538&rft_doaj_id=oai_doaj_org_article_64cff297148f43fe991181b47de84039&rfr_iscdi=true |