Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering

Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2021-10, Vol.269, p.118311-118311, Article 118311
Hauptverfasser: Kazemi-Aghdam, Fereshteh, Jahed, Vahid, Dehghan-Niri, Maryam, Ganji, Fariba, Vasheghani-Farahani, Ebrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118311
container_issue
container_start_page 118311
container_title Carbohydrate polymers
container_volume 269
creator Kazemi-Aghdam, Fereshteh
Jahed, Vahid
Dehghan-Niri, Maryam
Ganji, Fariba
Vasheghani-Farahani, Ebrahim
description Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration. [Display omitted] •Introduction of mHNTs into chitosan hydrogel increased mechanical strength.•mHNTs loading improved proliferation of encapsulated hAMSCs in NC hydrogel scaffold.•Embedded mHNTs induced hAMSCs differentiation into bone tissue.•Sustained release of icariin from IC@mHNTs had a synergic bone differentiation effect.
doi_str_mv 10.1016/j.carbpol.2021.118311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2555105805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861721006986</els_id><sourcerecordid>2555105805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-a114ab839df68d51810106c1c155d452ef6322ac121d5b79fa3dab6dbb91cb843</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUhesknwJHGarBCqeFSqxAbWxo9J6yixi50g9e9Jle6ZzWzuudI9hNwDS4FB-dimWgZ18F2asQxSgCoHuCALqFZ1AnlRXJIFg6JIqhJW1-QmxpZNVwJbkO-Na1EPUnVI9d4OPkpH90cT_A47ir1CY6zb0d4b21g0dC-7zh-jHZA66fwwKoy08YEq75AONsYRKbqddYhhIm_JVSO7iHfnvyRfry-f6_dk-_G2WT9vE50X2ZBIgEKqKq9NU1aGQzUtY6UGDZybgmfYlHmWSQ0ZGK5WdSNzI1VplKpBq6rIl-Rh7j0E_zNiHERvo8aukw79GEXGOQfGK8anKJ-jOvgYAzbiEGwvw1EAEyejohVno-JkVMxGJ-5p5nDa8WsxiKgtOo3GhsmhMN7-0_AHvaeDgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555105805</pqid></control><display><type>article</type><title>Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kazemi-Aghdam, Fereshteh ; Jahed, Vahid ; Dehghan-Niri, Maryam ; Ganji, Fariba ; Vasheghani-Farahani, Ebrahim</creator><creatorcontrib>Kazemi-Aghdam, Fereshteh ; Jahed, Vahid ; Dehghan-Niri, Maryam ; Ganji, Fariba ; Vasheghani-Farahani, Ebrahim</creatorcontrib><description>Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration. [Display omitted] •Introduction of mHNTs into chitosan hydrogel increased mechanical strength.•mHNTs loading improved proliferation of encapsulated hAMSCs in NC hydrogel scaffold.•Embedded mHNTs induced hAMSCs differentiation into bone tissue.•Sustained release of icariin from IC@mHNTs had a synergic bone differentiation effect.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2021.118311</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bone tissue engineering ; Chitosan ; Halloysite nanotube ; Icariin ; Injectable ; Nanocomposite hydrogel ; Sustained release</subject><ispartof>Carbohydrate polymers, 2021-10, Vol.269, p.118311-118311, Article 118311</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-a114ab839df68d51810106c1c155d452ef6322ac121d5b79fa3dab6dbb91cb843</citedby><cites>FETCH-LOGICAL-c342t-a114ab839df68d51810106c1c155d452ef6322ac121d5b79fa3dab6dbb91cb843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2021.118311$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kazemi-Aghdam, Fereshteh</creatorcontrib><creatorcontrib>Jahed, Vahid</creatorcontrib><creatorcontrib>Dehghan-Niri, Maryam</creatorcontrib><creatorcontrib>Ganji, Fariba</creatorcontrib><creatorcontrib>Vasheghani-Farahani, Ebrahim</creatorcontrib><title>Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering</title><title>Carbohydrate polymers</title><description>Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration. [Display omitted] •Introduction of mHNTs into chitosan hydrogel increased mechanical strength.•mHNTs loading improved proliferation of encapsulated hAMSCs in NC hydrogel scaffold.•Embedded mHNTs induced hAMSCs differentiation into bone tissue.•Sustained release of icariin from IC@mHNTs had a synergic bone differentiation effect.</description><subject>Bone tissue engineering</subject><subject>Chitosan</subject><subject>Halloysite nanotube</subject><subject>Icariin</subject><subject>Injectable</subject><subject>Nanocomposite hydrogel</subject><subject>Sustained release</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUhesknwJHGarBCqeFSqxAbWxo9J6yixi50g9e9Jle6ZzWzuudI9hNwDS4FB-dimWgZ18F2asQxSgCoHuCALqFZ1AnlRXJIFg6JIqhJW1-QmxpZNVwJbkO-Na1EPUnVI9d4OPkpH90cT_A47ir1CY6zb0d4b21g0dC-7zh-jHZA66fwwKoy08YEq75AONsYRKbqddYhhIm_JVSO7iHfnvyRfry-f6_dk-_G2WT9vE50X2ZBIgEKqKq9NU1aGQzUtY6UGDZybgmfYlHmWSQ0ZGK5WdSNzI1VplKpBq6rIl-Rh7j0E_zNiHERvo8aukw79GEXGOQfGK8anKJ-jOvgYAzbiEGwvw1EAEyejohVno-JkVMxGJ-5p5nDa8WsxiKgtOo3GhsmhMN7-0_AHvaeDgQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kazemi-Aghdam, Fereshteh</creator><creator>Jahed, Vahid</creator><creator>Dehghan-Niri, Maryam</creator><creator>Ganji, Fariba</creator><creator>Vasheghani-Farahani, Ebrahim</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211001</creationdate><title>Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering</title><author>Kazemi-Aghdam, Fereshteh ; Jahed, Vahid ; Dehghan-Niri, Maryam ; Ganji, Fariba ; Vasheghani-Farahani, Ebrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-a114ab839df68d51810106c1c155d452ef6322ac121d5b79fa3dab6dbb91cb843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bone tissue engineering</topic><topic>Chitosan</topic><topic>Halloysite nanotube</topic><topic>Icariin</topic><topic>Injectable</topic><topic>Nanocomposite hydrogel</topic><topic>Sustained release</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazemi-Aghdam, Fereshteh</creatorcontrib><creatorcontrib>Jahed, Vahid</creatorcontrib><creatorcontrib>Dehghan-Niri, Maryam</creatorcontrib><creatorcontrib>Ganji, Fariba</creatorcontrib><creatorcontrib>Vasheghani-Farahani, Ebrahim</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi-Aghdam, Fereshteh</au><au>Jahed, Vahid</au><au>Dehghan-Niri, Maryam</au><au>Ganji, Fariba</au><au>Vasheghani-Farahani, Ebrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering</atitle><jtitle>Carbohydrate polymers</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>269</volume><spage>118311</spage><epage>118311</epage><pages>118311-118311</pages><artnum>118311</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration. [Display omitted] •Introduction of mHNTs into chitosan hydrogel increased mechanical strength.•mHNTs loading improved proliferation of encapsulated hAMSCs in NC hydrogel scaffold.•Embedded mHNTs induced hAMSCs differentiation into bone tissue.•Sustained release of icariin from IC@mHNTs had a synergic bone differentiation effect.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbpol.2021.118311</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2021-10, Vol.269, p.118311-118311, Article 118311
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_2555105805
source Elsevier ScienceDirect Journals Complete
subjects Bone tissue engineering
Chitosan
Halloysite nanotube
Icariin
Injectable
Nanocomposite hydrogel
Sustained release
title Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectable%20chitosan%20hydrogel%20embedding%20modified%20halloysite%20nanotubes%20for%20bone%20tissue%20engineering&rft.jtitle=Carbohydrate%20polymers&rft.au=Kazemi-Aghdam,%20Fereshteh&rft.date=2021-10-01&rft.volume=269&rft.spage=118311&rft.epage=118311&rft.pages=118311-118311&rft.artnum=118311&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2021.118311&rft_dat=%3Cproquest_cross%3E2555105805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555105805&rft_id=info:pmid/&rft_els_id=S0144861721006986&rfr_iscdi=true