Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery

Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge‐defined PNR is non‐trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag‐edged PNRs in high yield (>80...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-09, Vol.33 (35), p.e2102083-n/a
Hauptverfasser: Yu, Wei, Yang, Jinlin, Li, Jing, Zhang, Kun, Xu, Haomin, Zhou, Xin, Chen, Wei, Loh, Kian Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page e2102083
container_title Advanced materials (Weinheim)
container_volume 33
creator Yu, Wei
Yang, Jinlin
Li, Jing
Zhang, Kun
Xu, Haomin
Zhou, Xin
Chen, Wei
Loh, Kian Ping
description Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge‐defined PNR is non‐trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag‐edged PNRs in high yield (>80%) is reported. The presence of chemically active zigzag edges in PNR allows it to spontaneously react with Li to form a Li+ ion conducting Li3P phase, which can be used as a protective layer on Li metal anode in lithium metal batteries (LMBs). PNR protective layer prevents the parasitic reaction between lithium metal and electrolyte and promotes Li+ ion diffusion kinetics, enabling homogenous Li+ ion flux and long‐time cycling stability up to 1100 h at a current density of 1 mA cm−2. LiFePO4|PNR‐Li full‐cell batteries with an areal capacity of 2 mAh cm−2, a lean electrolyte (20 µl mAh−1) and a negative/positive (N/P) electrodes ratio of 3.5 can be stably cycled over 100 cycles. Phosphorene nanoribbons (PNRs) are prepared by a facile electrochemical exfoliation with a high yield of >80%. The PNR film acts as a protective layer on a lithium‐metal anode to form a Li+‐ion‐conducting Li3P interface that enables long‐time cycling stability of lithium‐metal batteries.
doi_str_mv 10.1002/adma.202102083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2554351588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554351588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3503-49a9d45a476b34c5beeb78b19f0a37e0f3e0919d5beea0bc9da535276cb547543</originalsourceid><addsrcrecordid>eNqF0DFPwzAQBWALgUQprMyWWFhSzrGdxGMpFJBa6AADk-U4juoqiYOdqOq_J6UIJBamG-57p9ND6JLAhADEN6qo1SSGmEAMGT1CI8JjEjEQ_BiNQFAeiYRlp-gshA0AiASSEXqfK20rg1feFb3urGuwK_Fq7UK7dt40Bj-rxnmb564JuHNb5YuAp21bWa2-uG3wwnZr29d4aTpV4VvVdcbvztFJqapgLr7nGL3N719nj9Hi5eFpNl1EmnKgERNKFIwrliY5ZZrnxuRplhNRgqKpgZIaEEQU-4WCXItCccrjNNE5ZylndIyuD3db7z56EzpZ26BNVanGuD7ImA-IE55lA736Qzeu983w3aCSjKQJYXxQk4PS3oXgTSlbb2vld5KA3Dct903Ln6aHgDgEtkOTu3-0nN4tp7_ZTx7ngkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568176145</pqid></control><display><type>article</type><title>Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery</title><source>Wiley Journals</source><creator>Yu, Wei ; Yang, Jinlin ; Li, Jing ; Zhang, Kun ; Xu, Haomin ; Zhou, Xin ; Chen, Wei ; Loh, Kian Ping</creator><creatorcontrib>Yu, Wei ; Yang, Jinlin ; Li, Jing ; Zhang, Kun ; Xu, Haomin ; Zhou, Xin ; Chen, Wei ; Loh, Kian Ping</creatorcontrib><description>Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge‐defined PNR is non‐trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag‐edged PNRs in high yield (&gt;80%) is reported. The presence of chemically active zigzag edges in PNR allows it to spontaneously react with Li to form a Li+ ion conducting Li3P phase, which can be used as a protective layer on Li metal anode in lithium metal batteries (LMBs). PNR protective layer prevents the parasitic reaction between lithium metal and electrolyte and promotes Li+ ion diffusion kinetics, enabling homogenous Li+ ion flux and long‐time cycling stability up to 1100 h at a current density of 1 mA cm−2. LiFePO4|PNR‐Li full‐cell batteries with an areal capacity of 2 mAh cm−2, a lean electrolyte (20 µl mAh−1) and a negative/positive (N/P) electrodes ratio of 3.5 can be stably cycled over 100 cycles. Phosphorene nanoribbons (PNRs) are prepared by a facile electrochemical exfoliation with a high yield of &gt;80%. The PNR film acts as a protective layer on a lithium‐metal anode to form a Li+‐ion‐conducting Li3P interface that enables long‐time cycling stability of lithium‐metal batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202102083</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodic protection ; black phosphorous ; electrochemical exfoliation ; Electrolytes ; Ion diffusion ; Ion flux ; Lithium ; Lithium ions ; lithium metal batteries ; lithium phosphide ; Materials science ; Nanoribbons ; Phosphorene ; phosphorene nanoribbons</subject><ispartof>Advanced materials (Weinheim), 2021-09, Vol.33 (35), p.e2102083-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3503-49a9d45a476b34c5beeb78b19f0a37e0f3e0919d5beea0bc9da535276cb547543</citedby><cites>FETCH-LOGICAL-c3503-49a9d45a476b34c5beeb78b19f0a37e0f3e0919d5beea0bc9da535276cb547543</cites><orcidid>0000-0002-1491-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202102083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202102083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Yang, Jinlin</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Xu, Haomin</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><title>Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery</title><title>Advanced materials (Weinheim)</title><description>Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge‐defined PNR is non‐trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag‐edged PNRs in high yield (&gt;80%) is reported. The presence of chemically active zigzag edges in PNR allows it to spontaneously react with Li to form a Li+ ion conducting Li3P phase, which can be used as a protective layer on Li metal anode in lithium metal batteries (LMBs). PNR protective layer prevents the parasitic reaction between lithium metal and electrolyte and promotes Li+ ion diffusion kinetics, enabling homogenous Li+ ion flux and long‐time cycling stability up to 1100 h at a current density of 1 mA cm−2. LiFePO4|PNR‐Li full‐cell batteries with an areal capacity of 2 mAh cm−2, a lean electrolyte (20 µl mAh−1) and a negative/positive (N/P) electrodes ratio of 3.5 can be stably cycled over 100 cycles. Phosphorene nanoribbons (PNRs) are prepared by a facile electrochemical exfoliation with a high yield of &gt;80%. The PNR film acts as a protective layer on a lithium‐metal anode to form a Li+‐ion‐conducting Li3P interface that enables long‐time cycling stability of lithium‐metal batteries.</description><subject>Anodic protection</subject><subject>black phosphorous</subject><subject>electrochemical exfoliation</subject><subject>Electrolytes</subject><subject>Ion diffusion</subject><subject>Ion flux</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>lithium metal batteries</subject><subject>lithium phosphide</subject><subject>Materials science</subject><subject>Nanoribbons</subject><subject>Phosphorene</subject><subject>phosphorene nanoribbons</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0DFPwzAQBWALgUQprMyWWFhSzrGdxGMpFJBa6AADk-U4juoqiYOdqOq_J6UIJBamG-57p9ND6JLAhADEN6qo1SSGmEAMGT1CI8JjEjEQ_BiNQFAeiYRlp-gshA0AiASSEXqfK20rg1feFb3urGuwK_Fq7UK7dt40Bj-rxnmb564JuHNb5YuAp21bWa2-uG3wwnZr29d4aTpV4VvVdcbvztFJqapgLr7nGL3N719nj9Hi5eFpNl1EmnKgERNKFIwrliY5ZZrnxuRplhNRgqKpgZIaEEQU-4WCXItCccrjNNE5ZylndIyuD3db7z56EzpZ26BNVanGuD7ImA-IE55lA736Qzeu983w3aCSjKQJYXxQk4PS3oXgTSlbb2vld5KA3Dct903Ln6aHgDgEtkOTu3-0nN4tp7_ZTx7ngkY</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yu, Wei</creator><creator>Yang, Jinlin</creator><creator>Li, Jing</creator><creator>Zhang, Kun</creator><creator>Xu, Haomin</creator><creator>Zhou, Xin</creator><creator>Chen, Wei</creator><creator>Loh, Kian Ping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1491-743X</orcidid></search><sort><creationdate>20210901</creationdate><title>Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery</title><author>Yu, Wei ; Yang, Jinlin ; Li, Jing ; Zhang, Kun ; Xu, Haomin ; Zhou, Xin ; Chen, Wei ; Loh, Kian Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3503-49a9d45a476b34c5beeb78b19f0a37e0f3e0919d5beea0bc9da535276cb547543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodic protection</topic><topic>black phosphorous</topic><topic>electrochemical exfoliation</topic><topic>Electrolytes</topic><topic>Ion diffusion</topic><topic>Ion flux</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>lithium metal batteries</topic><topic>lithium phosphide</topic><topic>Materials science</topic><topic>Nanoribbons</topic><topic>Phosphorene</topic><topic>phosphorene nanoribbons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Yang, Jinlin</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Xu, Haomin</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wei</au><au>Yang, Jinlin</au><au>Li, Jing</au><au>Zhang, Kun</au><au>Xu, Haomin</au><au>Zhou, Xin</au><au>Chen, Wei</au><au>Loh, Kian Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>35</issue><spage>e2102083</spage><epage>n/a</epage><pages>e2102083-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge‐defined PNR is non‐trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag‐edged PNRs in high yield (&gt;80%) is reported. The presence of chemically active zigzag edges in PNR allows it to spontaneously react with Li to form a Li+ ion conducting Li3P phase, which can be used as a protective layer on Li metal anode in lithium metal batteries (LMBs). PNR protective layer prevents the parasitic reaction between lithium metal and electrolyte and promotes Li+ ion diffusion kinetics, enabling homogenous Li+ ion flux and long‐time cycling stability up to 1100 h at a current density of 1 mA cm−2. LiFePO4|PNR‐Li full‐cell batteries with an areal capacity of 2 mAh cm−2, a lean electrolyte (20 µl mAh−1) and a negative/positive (N/P) electrodes ratio of 3.5 can be stably cycled over 100 cycles. Phosphorene nanoribbons (PNRs) are prepared by a facile electrochemical exfoliation with a high yield of &gt;80%. The PNR film acts as a protective layer on a lithium‐metal anode to form a Li+‐ion‐conducting Li3P interface that enables long‐time cycling stability of lithium‐metal batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202102083</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1491-743X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-09, Vol.33 (35), p.e2102083-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2554351588
source Wiley Journals
subjects Anodic protection
black phosphorous
electrochemical exfoliation
Electrolytes
Ion diffusion
Ion flux
Lithium
Lithium ions
lithium metal batteries
lithium phosphide
Materials science
Nanoribbons
Phosphorene
phosphorene nanoribbons
title Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Production%20of%20Phosphorene%20Nanoribbons%20towards%20Application%20in%20Lithium%20Metal%20Battery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yu,%20Wei&rft.date=2021-09-01&rft.volume=33&rft.issue=35&rft.spage=e2102083&rft.epage=n/a&rft.pages=e2102083-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202102083&rft_dat=%3Cproquest_cross%3E2554351588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568176145&rft_id=info:pmid/&rfr_iscdi=true