Free-electron lasing at 27 nanometres based on a laser wakefield accelerator
X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region 1 – 5 , and have become indispensable tools for applications in structural biology and chemistry, among other disciplines 6 . Several X-ray free-electron laser facilities are in oper...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-07, Vol.595 (7868), p.516-520 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 520 |
---|---|
container_issue | 7868 |
container_start_page | 516 |
container_title | Nature (London) |
container_volume | 595 |
creator | Wang, Wentao Feng, Ke Ke, Lintong Yu, Changhai Xu, Yi Qi, Rong Chen, Yu Qin, Zhiyong Zhang, Zhijun Fang, Ming Liu, Jiaqi Jiang, Kangnan Wang, Hao Wang, Cheng Yang, Xiaojun Wu, Fenxiang Leng, Yuxin Liu, Jiansheng Li, Ruxin Xu, Zhizhan |
description | X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region
1
–
5
, and have become indispensable tools for applications in structural biology and chemistry, among other disciplines
6
. Several X-ray free-electron laser facilities are in operation
2
–
5
; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators
7
–
10
, and are regarded as an attractive option for driving compact X-ray free-electron lasers
11
. However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10
10
per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications.
Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers. |
doi_str_mv | 10.1038/s41586-021-03678-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2554350553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669232601</galeid><sourcerecordid>A669232601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgehS-AMcUAQXOLiM7djOHquKQqWVkPg4W15nEqUkztZO1OXfM9stlEUrlIOl-JlX49Ew9lLAmQBVvc-l0JXhIAUHZWzFt4_YQpTW8NJU9jFbAMiKQ6XMCXuW8zUAaGHLp-xElXIJpawWbHWZEDn2GKY0xqL3uYtt4adC2iL6OA44JczF2mesCwJ-RzAVt_4HNh32deFDoPLkpzE9Z08a32d8cX-esu-XH75dfOKrzx-vLs5XPBiwE69ssFZ4EAEt1CipqeWyVqpUAoJAQYFWlgGECdgYHdY1vSNUsBYg6MaoU_Z2n7tJ482MeXJDl6mL3kcc5-yk1qXSoLUi-uYfej3OKVJ3d8osJWjzoFrfo-tiM07Jh12oOzdklDQgSPEjqsVIr-_HSPOg3wf-9REfNt2N-xudHUH01Th04Wjqu4MCMhNup9bPOburr18OrdzbkMacEzZuk7rBp59OgNvtkNvvkKMdcnc75LZU9Op-ZPN6wPpPye-lIaD2INNVbDE9zPQ_sb8A6jbL-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554692056</pqid></control><display><type>article</type><title>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Wentao ; Feng, Ke ; Ke, Lintong ; Yu, Changhai ; Xu, Yi ; Qi, Rong ; Chen, Yu ; Qin, Zhiyong ; Zhang, Zhijun ; Fang, Ming ; Liu, Jiaqi ; Jiang, Kangnan ; Wang, Hao ; Wang, Cheng ; Yang, Xiaojun ; Wu, Fenxiang ; Leng, Yuxin ; Liu, Jiansheng ; Li, Ruxin ; Xu, Zhizhan</creator><creatorcontrib>Wang, Wentao ; Feng, Ke ; Ke, Lintong ; Yu, Changhai ; Xu, Yi ; Qi, Rong ; Chen, Yu ; Qin, Zhiyong ; Zhang, Zhijun ; Fang, Ming ; Liu, Jiaqi ; Jiang, Kangnan ; Wang, Hao ; Wang, Cheng ; Yang, Xiaojun ; Wu, Fenxiang ; Leng, Yuxin ; Liu, Jiansheng ; Li, Ruxin ; Xu, Zhizhan</creatorcontrib><description>X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region
1
–
5
, and have become indispensable tools for applications in structural biology and chemistry, among other disciplines
6
. Several X-ray free-electron laser facilities are in operation
2
–
5
; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators
7
–
10
, and are regarded as an attractive option for driving compact X-ray free-electron lasers
11
. However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10
10
per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications.
Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03678-x</identifier><identifier>PMID: 34290428</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1087 ; 639/766/1960/1137 ; Accelerators ; Amplification ; Coherent radiation ; Collaboration ; Electron beams ; Electrons ; Energy ; Experiments ; Free electron lasers ; Humanities and Social Sciences ; Laboratories ; Lasers ; Lasing ; multidisciplinary ; Particle accelerators ; Plasma ; Radiation ; Science ; Science (multidisciplinary) ; Wavelengths ; X-rays</subject><ispartof>Nature (London), 2021-07, Vol.595 (7868), p.516-520</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</citedby><cites>FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</cites><orcidid>0000-0003-0157-1297 ; 0000-0002-5984-7965 ; 0000-0002-2603-9814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03678-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03678-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34290428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Feng, Ke</creatorcontrib><creatorcontrib>Ke, Lintong</creatorcontrib><creatorcontrib>Yu, Changhai</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Qi, Rong</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Qin, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Zhijun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Kangnan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Wu, Fenxiang</creatorcontrib><creatorcontrib>Leng, Yuxin</creatorcontrib><creatorcontrib>Liu, Jiansheng</creatorcontrib><creatorcontrib>Li, Ruxin</creatorcontrib><creatorcontrib>Xu, Zhizhan</creatorcontrib><title>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region
1
–
5
, and have become indispensable tools for applications in structural biology and chemistry, among other disciplines
6
. Several X-ray free-electron laser facilities are in operation
2
–
5
; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators
7
–
10
, and are regarded as an attractive option for driving compact X-ray free-electron lasers
11
. However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10
10
per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications.
Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.</description><subject>639/624/1020/1087</subject><subject>639/766/1960/1137</subject><subject>Accelerators</subject><subject>Amplification</subject><subject>Coherent radiation</subject><subject>Collaboration</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Energy</subject><subject>Experiments</subject><subject>Free electron lasers</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Lasing</subject><subject>multidisciplinary</subject><subject>Particle accelerators</subject><subject>Plasma</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Wavelengths</subject><subject>X-rays</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1v1DAQBmALgehS-AMcUAQXOLiM7djOHquKQqWVkPg4W15nEqUkztZO1OXfM9stlEUrlIOl-JlX49Ew9lLAmQBVvc-l0JXhIAUHZWzFt4_YQpTW8NJU9jFbAMiKQ6XMCXuW8zUAaGHLp-xElXIJpawWbHWZEDn2GKY0xqL3uYtt4adC2iL6OA44JczF2mesCwJ-RzAVt_4HNh32deFDoPLkpzE9Z08a32d8cX-esu-XH75dfOKrzx-vLs5XPBiwE69ssFZ4EAEt1CipqeWyVqpUAoJAQYFWlgGECdgYHdY1vSNUsBYg6MaoU_Z2n7tJ482MeXJDl6mL3kcc5-yk1qXSoLUi-uYfej3OKVJ3d8osJWjzoFrfo-tiM07Jh12oOzdklDQgSPEjqsVIr-_HSPOg3wf-9REfNt2N-xudHUH01Th04Wjqu4MCMhNup9bPOburr18OrdzbkMacEzZuk7rBp59OgNvtkNvvkKMdcnc75LZU9Op-ZPN6wPpPye-lIaD2INNVbDE9zPQ_sb8A6jbL-g</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Wang, Wentao</creator><creator>Feng, Ke</creator><creator>Ke, Lintong</creator><creator>Yu, Changhai</creator><creator>Xu, Yi</creator><creator>Qi, Rong</creator><creator>Chen, Yu</creator><creator>Qin, Zhiyong</creator><creator>Zhang, Zhijun</creator><creator>Fang, Ming</creator><creator>Liu, Jiaqi</creator><creator>Jiang, Kangnan</creator><creator>Wang, Hao</creator><creator>Wang, Cheng</creator><creator>Yang, Xiaojun</creator><creator>Wu, Fenxiang</creator><creator>Leng, Yuxin</creator><creator>Liu, Jiansheng</creator><creator>Li, Ruxin</creator><creator>Xu, Zhizhan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0157-1297</orcidid><orcidid>https://orcid.org/0000-0002-5984-7965</orcidid><orcidid>https://orcid.org/0000-0002-2603-9814</orcidid></search><sort><creationdate>20210722</creationdate><title>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</title><author>Wang, Wentao ; Feng, Ke ; Ke, Lintong ; Yu, Changhai ; Xu, Yi ; Qi, Rong ; Chen, Yu ; Qin, Zhiyong ; Zhang, Zhijun ; Fang, Ming ; Liu, Jiaqi ; Jiang, Kangnan ; Wang, Hao ; Wang, Cheng ; Yang, Xiaojun ; Wu, Fenxiang ; Leng, Yuxin ; Liu, Jiansheng ; Li, Ruxin ; Xu, Zhizhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/1020/1087</topic><topic>639/766/1960/1137</topic><topic>Accelerators</topic><topic>Amplification</topic><topic>Coherent radiation</topic><topic>Collaboration</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Energy</topic><topic>Experiments</topic><topic>Free electron lasers</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Lasing</topic><topic>multidisciplinary</topic><topic>Particle accelerators</topic><topic>Plasma</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Wavelengths</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Feng, Ke</creatorcontrib><creatorcontrib>Ke, Lintong</creatorcontrib><creatorcontrib>Yu, Changhai</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Qi, Rong</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Qin, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Zhijun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Kangnan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Wu, Fenxiang</creatorcontrib><creatorcontrib>Leng, Yuxin</creatorcontrib><creatorcontrib>Liu, Jiansheng</creatorcontrib><creatorcontrib>Li, Ruxin</creatorcontrib><creatorcontrib>Xu, Zhizhan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wentao</au><au>Feng, Ke</au><au>Ke, Lintong</au><au>Yu, Changhai</au><au>Xu, Yi</au><au>Qi, Rong</au><au>Chen, Yu</au><au>Qin, Zhiyong</au><au>Zhang, Zhijun</au><au>Fang, Ming</au><au>Liu, Jiaqi</au><au>Jiang, Kangnan</au><au>Wang, Hao</au><au>Wang, Cheng</au><au>Yang, Xiaojun</au><au>Wu, Fenxiang</au><au>Leng, Yuxin</au><au>Liu, Jiansheng</au><au>Li, Ruxin</au><au>Xu, Zhizhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-07-22</date><risdate>2021</risdate><volume>595</volume><issue>7868</issue><spage>516</spage><epage>520</epage><pages>516-520</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region
1
–
5
, and have become indispensable tools for applications in structural biology and chemistry, among other disciplines
6
. Several X-ray free-electron laser facilities are in operation
2
–
5
; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators
7
–
10
, and are regarded as an attractive option for driving compact X-ray free-electron lasers
11
. However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10
10
per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications.
Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34290428</pmid><doi>10.1038/s41586-021-03678-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0157-1297</orcidid><orcidid>https://orcid.org/0000-0002-5984-7965</orcidid><orcidid>https://orcid.org/0000-0002-2603-9814</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-07, Vol.595 (7868), p.516-520 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2554350553 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/624/1020/1087 639/766/1960/1137 Accelerators Amplification Coherent radiation Collaboration Electron beams Electrons Energy Experiments Free electron lasers Humanities and Social Sciences Laboratories Lasers Lasing multidisciplinary Particle accelerators Plasma Radiation Science Science (multidisciplinary) Wavelengths X-rays |
title | Free-electron lasing at 27 nanometres based on a laser wakefield accelerator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free-electron%20lasing%20at%2027%20nanometres%20based%20on%20a%20laser%20wakefield%20accelerator&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Wentao&rft.date=2021-07-22&rft.volume=595&rft.issue=7868&rft.spage=516&rft.epage=520&rft.pages=516-520&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03678-x&rft_dat=%3Cgale_proqu%3EA669232601%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554692056&rft_id=info:pmid/34290428&rft_galeid=A669232601&rfr_iscdi=true |