Free-electron lasing at 27 nanometres based on a laser wakefield accelerator

X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region 1 – 5 , and have become indispensable tools for applications in structural biology and chemistry, among other disciplines 6 . Several X-ray free-electron laser facilities are in oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-07, Vol.595 (7868), p.516-520
Hauptverfasser: Wang, Wentao, Feng, Ke, Ke, Lintong, Yu, Changhai, Xu, Yi, Qi, Rong, Chen, Yu, Qin, Zhiyong, Zhang, Zhijun, Fang, Ming, Liu, Jiaqi, Jiang, Kangnan, Wang, Hao, Wang, Cheng, Yang, Xiaojun, Wu, Fenxiang, Leng, Yuxin, Liu, Jiansheng, Li, Ruxin, Xu, Zhizhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue 7868
container_start_page 516
container_title Nature (London)
container_volume 595
creator Wang, Wentao
Feng, Ke
Ke, Lintong
Yu, Changhai
Xu, Yi
Qi, Rong
Chen, Yu
Qin, Zhiyong
Zhang, Zhijun
Fang, Ming
Liu, Jiaqi
Jiang, Kangnan
Wang, Hao
Wang, Cheng
Yang, Xiaojun
Wu, Fenxiang
Leng, Yuxin
Liu, Jiansheng
Li, Ruxin
Xu, Zhizhan
description X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region 1 – 5 , and have become indispensable tools for applications in structural biology and chemistry, among other disciplines 6 . Several X-ray free-electron laser facilities are in operation 2 – 5 ; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators 7 – 10 , and are regarded as an attractive option for driving compact X-ray free-electron lasers 11 . However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10 10 per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications. Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.
doi_str_mv 10.1038/s41586-021-03678-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2554350553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669232601</galeid><sourcerecordid>A669232601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgehS-AMcUAQXOLiM7djOHquKQqWVkPg4W15nEqUkztZO1OXfM9stlEUrlIOl-JlX49Ew9lLAmQBVvc-l0JXhIAUHZWzFt4_YQpTW8NJU9jFbAMiKQ6XMCXuW8zUAaGHLp-xElXIJpawWbHWZEDn2GKY0xqL3uYtt4adC2iL6OA44JczF2mesCwJ-RzAVt_4HNh32deFDoPLkpzE9Z08a32d8cX-esu-XH75dfOKrzx-vLs5XPBiwE69ssFZ4EAEt1CipqeWyVqpUAoJAQYFWlgGECdgYHdY1vSNUsBYg6MaoU_Z2n7tJ482MeXJDl6mL3kcc5-yk1qXSoLUi-uYfej3OKVJ3d8osJWjzoFrfo-tiM07Jh12oOzdklDQgSPEjqsVIr-_HSPOg3wf-9REfNt2N-xudHUH01Th04Wjqu4MCMhNup9bPOburr18OrdzbkMacEzZuk7rBp59OgNvtkNvvkKMdcnc75LZU9Op-ZPN6wPpPye-lIaD2INNVbDE9zPQ_sb8A6jbL-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554692056</pqid></control><display><type>article</type><title>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Wentao ; Feng, Ke ; Ke, Lintong ; Yu, Changhai ; Xu, Yi ; Qi, Rong ; Chen, Yu ; Qin, Zhiyong ; Zhang, Zhijun ; Fang, Ming ; Liu, Jiaqi ; Jiang, Kangnan ; Wang, Hao ; Wang, Cheng ; Yang, Xiaojun ; Wu, Fenxiang ; Leng, Yuxin ; Liu, Jiansheng ; Li, Ruxin ; Xu, Zhizhan</creator><creatorcontrib>Wang, Wentao ; Feng, Ke ; Ke, Lintong ; Yu, Changhai ; Xu, Yi ; Qi, Rong ; Chen, Yu ; Qin, Zhiyong ; Zhang, Zhijun ; Fang, Ming ; Liu, Jiaqi ; Jiang, Kangnan ; Wang, Hao ; Wang, Cheng ; Yang, Xiaojun ; Wu, Fenxiang ; Leng, Yuxin ; Liu, Jiansheng ; Li, Ruxin ; Xu, Zhizhan</creatorcontrib><description>X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region 1 – 5 , and have become indispensable tools for applications in structural biology and chemistry, among other disciplines 6 . Several X-ray free-electron laser facilities are in operation 2 – 5 ; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators 7 – 10 , and are regarded as an attractive option for driving compact X-ray free-electron lasers 11 . However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10 10 per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications. Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03678-x</identifier><identifier>PMID: 34290428</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1087 ; 639/766/1960/1137 ; Accelerators ; Amplification ; Coherent radiation ; Collaboration ; Electron beams ; Electrons ; Energy ; Experiments ; Free electron lasers ; Humanities and Social Sciences ; Laboratories ; Lasers ; Lasing ; multidisciplinary ; Particle accelerators ; Plasma ; Radiation ; Science ; Science (multidisciplinary) ; Wavelengths ; X-rays</subject><ispartof>Nature (London), 2021-07, Vol.595 (7868), p.516-520</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 22, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</citedby><cites>FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</cites><orcidid>0000-0003-0157-1297 ; 0000-0002-5984-7965 ; 0000-0002-2603-9814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03678-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03678-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34290428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Feng, Ke</creatorcontrib><creatorcontrib>Ke, Lintong</creatorcontrib><creatorcontrib>Yu, Changhai</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Qi, Rong</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Qin, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Zhijun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Kangnan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Wu, Fenxiang</creatorcontrib><creatorcontrib>Leng, Yuxin</creatorcontrib><creatorcontrib>Liu, Jiansheng</creatorcontrib><creatorcontrib>Li, Ruxin</creatorcontrib><creatorcontrib>Xu, Zhizhan</creatorcontrib><title>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region 1 – 5 , and have become indispensable tools for applications in structural biology and chemistry, among other disciplines 6 . Several X-ray free-electron laser facilities are in operation 2 – 5 ; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators 7 – 10 , and are regarded as an attractive option for driving compact X-ray free-electron lasers 11 . However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10 10 per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications. Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.</description><subject>639/624/1020/1087</subject><subject>639/766/1960/1137</subject><subject>Accelerators</subject><subject>Amplification</subject><subject>Coherent radiation</subject><subject>Collaboration</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Energy</subject><subject>Experiments</subject><subject>Free electron lasers</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Lasing</subject><subject>multidisciplinary</subject><subject>Particle accelerators</subject><subject>Plasma</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Wavelengths</subject><subject>X-rays</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1v1DAQBmALgehS-AMcUAQXOLiM7djOHquKQqWVkPg4W15nEqUkztZO1OXfM9stlEUrlIOl-JlX49Ew9lLAmQBVvc-l0JXhIAUHZWzFt4_YQpTW8NJU9jFbAMiKQ6XMCXuW8zUAaGHLp-xElXIJpawWbHWZEDn2GKY0xqL3uYtt4adC2iL6OA44JczF2mesCwJ-RzAVt_4HNh32deFDoPLkpzE9Z08a32d8cX-esu-XH75dfOKrzx-vLs5XPBiwE69ssFZ4EAEt1CipqeWyVqpUAoJAQYFWlgGECdgYHdY1vSNUsBYg6MaoU_Z2n7tJ482MeXJDl6mL3kcc5-yk1qXSoLUi-uYfej3OKVJ3d8osJWjzoFrfo-tiM07Jh12oOzdklDQgSPEjqsVIr-_HSPOg3wf-9REfNt2N-xudHUH01Th04Wjqu4MCMhNup9bPOburr18OrdzbkMacEzZuk7rBp59OgNvtkNvvkKMdcnc75LZU9Op-ZPN6wPpPye-lIaD2INNVbDE9zPQ_sb8A6jbL-g</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Wang, Wentao</creator><creator>Feng, Ke</creator><creator>Ke, Lintong</creator><creator>Yu, Changhai</creator><creator>Xu, Yi</creator><creator>Qi, Rong</creator><creator>Chen, Yu</creator><creator>Qin, Zhiyong</creator><creator>Zhang, Zhijun</creator><creator>Fang, Ming</creator><creator>Liu, Jiaqi</creator><creator>Jiang, Kangnan</creator><creator>Wang, Hao</creator><creator>Wang, Cheng</creator><creator>Yang, Xiaojun</creator><creator>Wu, Fenxiang</creator><creator>Leng, Yuxin</creator><creator>Liu, Jiansheng</creator><creator>Li, Ruxin</creator><creator>Xu, Zhizhan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0157-1297</orcidid><orcidid>https://orcid.org/0000-0002-5984-7965</orcidid><orcidid>https://orcid.org/0000-0002-2603-9814</orcidid></search><sort><creationdate>20210722</creationdate><title>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</title><author>Wang, Wentao ; Feng, Ke ; Ke, Lintong ; Yu, Changhai ; Xu, Yi ; Qi, Rong ; Chen, Yu ; Qin, Zhiyong ; Zhang, Zhijun ; Fang, Ming ; Liu, Jiaqi ; Jiang, Kangnan ; Wang, Hao ; Wang, Cheng ; Yang, Xiaojun ; Wu, Fenxiang ; Leng, Yuxin ; Liu, Jiansheng ; Li, Ruxin ; Xu, Zhizhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-87c771a01ce70de251799d334310c1e1cce724c016cef65cbd028c80b101e7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/624/1020/1087</topic><topic>639/766/1960/1137</topic><topic>Accelerators</topic><topic>Amplification</topic><topic>Coherent radiation</topic><topic>Collaboration</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Energy</topic><topic>Experiments</topic><topic>Free electron lasers</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Lasing</topic><topic>multidisciplinary</topic><topic>Particle accelerators</topic><topic>Plasma</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Wavelengths</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Feng, Ke</creatorcontrib><creatorcontrib>Ke, Lintong</creatorcontrib><creatorcontrib>Yu, Changhai</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><creatorcontrib>Qi, Rong</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Qin, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Zhijun</creatorcontrib><creatorcontrib>Fang, Ming</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Jiang, Kangnan</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yang, Xiaojun</creatorcontrib><creatorcontrib>Wu, Fenxiang</creatorcontrib><creatorcontrib>Leng, Yuxin</creatorcontrib><creatorcontrib>Liu, Jiansheng</creatorcontrib><creatorcontrib>Li, Ruxin</creatorcontrib><creatorcontrib>Xu, Zhizhan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wentao</au><au>Feng, Ke</au><au>Ke, Lintong</au><au>Yu, Changhai</au><au>Xu, Yi</au><au>Qi, Rong</au><au>Chen, Yu</au><au>Qin, Zhiyong</au><au>Zhang, Zhijun</au><au>Fang, Ming</au><au>Liu, Jiaqi</au><au>Jiang, Kangnan</au><au>Wang, Hao</au><au>Wang, Cheng</au><au>Yang, Xiaojun</au><au>Wu, Fenxiang</au><au>Leng, Yuxin</au><au>Liu, Jiansheng</au><au>Li, Ruxin</au><au>Xu, Zhizhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free-electron lasing at 27 nanometres based on a laser wakefield accelerator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-07-22</date><risdate>2021</risdate><volume>595</volume><issue>7868</issue><spage>516</spage><epage>520</epage><pages>516-520</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>X-ray free-electron lasers can generate intense and coherent radiation at wavelengths down to the sub-ångström region 1 – 5 , and have become indispensable tools for applications in structural biology and chemistry, among other disciplines 6 . Several X-ray free-electron laser facilities are in operation 2 – 5 ; however, their requirement for large, high-cost, state-of-the-art radio-frequency accelerators has led to great interest in the development of compact and economical accelerators. Laser wakefield accelerators can sustain accelerating gradients more than three orders of magnitude higher than those of radio-frequency accelerators 7 – 10 , and are regarded as an attractive option for driving compact X-ray free-electron lasers 11 . However, the realization of such devices remains a challenge owing to the relatively poor quality of electron beams that are based on a laser wakefield accelerator. Here we present an experimental demonstration of undulator radiation amplification in the exponential-gain regime by using electron beams based on a laser wakefield accelerator. The amplified undulator radiation, which is typically centred at 27 nanometres and has a maximum photon number of around 10 10 per shot, yields a maximum radiation energy of about 150 nanojoules. In the third of three undulators in the device, the maximum gain of the radiation power is approximately 100-fold, confirming a successful operation in the exponential-gain regime. Our results constitute a proof-of-principle demonstration of free-electron lasing using a laser wakefield accelerator, and pave the way towards the development of compact X-ray free-electron lasers based on this technology with broad applications. Lasing in the extreme-ultraviolet range is demonstrated using a laser wakefield accelerator, as a step towards compact X-ray free-electron lasers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34290428</pmid><doi>10.1038/s41586-021-03678-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0157-1297</orcidid><orcidid>https://orcid.org/0000-0002-5984-7965</orcidid><orcidid>https://orcid.org/0000-0002-2603-9814</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-07, Vol.595 (7868), p.516-520
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2554350553
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/1020/1087
639/766/1960/1137
Accelerators
Amplification
Coherent radiation
Collaboration
Electron beams
Electrons
Energy
Experiments
Free electron lasers
Humanities and Social Sciences
Laboratories
Lasers
Lasing
multidisciplinary
Particle accelerators
Plasma
Radiation
Science
Science (multidisciplinary)
Wavelengths
X-rays
title Free-electron lasing at 27 nanometres based on a laser wakefield accelerator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free-electron%20lasing%20at%2027%20nanometres%20based%20on%20a%20laser%20wakefield%20accelerator&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Wentao&rft.date=2021-07-22&rft.volume=595&rft.issue=7868&rft.spage=516&rft.epage=520&rft.pages=516-520&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03678-x&rft_dat=%3Cgale_proqu%3EA669232601%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554692056&rft_id=info:pmid/34290428&rft_galeid=A669232601&rfr_iscdi=true